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SLTUMARY

This report describes a fuzzy logic decision tool developed at NOSC under In-
dependent Exploratory Development funding. The tool implements alternate versions
of an algorithm based on results published by Zadeh, Bellman, Saaty, and Yager. The
tooi has broad application to command and control systems since decision making in
a military context usaally involves imprecise knowledge and subjective goals.

Decision making is defined as an act of rational choice. In particular, given a
set of pos.sible choices for a given situation, the optimal choice is thc omne that meets a
particular set of objectives best. Best implies that a utility function over objectives
can be optimized.

An important enhancement of this model uses fuzzy sets to represent uncer-
tain objectives and incomplete information about a situation (Zadeh & Bellman,
1970). The ability to represent multiple-objective decision problems involving vague
or fuzzy objectives is, in fact, one of the more useful applications of fuzzy set theory.
This report presents an algorithm for solving multiple-objective decision problems
when the objectives haye differing degrees of importance. , ,K'.

The input to the alga-ithm is (1) a set of chtices, (2) a set of objectives, (3) the
degree to which each choice satisfies each objective, and (4) a comparison of the

importance of the o'uj ectives. Two methods have been developed for comparing the
importance of the objectives. These are the rank order method (Yager, 1981) and the
pair-wise comparison method (Saaty, 1977). The rank order method is simple to use
and solves small problems quickly and efficiently. The pair-wise comparison method
is more effective for large objective sets because it allows inconsistencies in user pref-
erences to be evaluated.

Two utility functions to be optimized over the objectives have been imple-
mented. The first, the min-max method, corresponds to worst-case analysis, while
the second method, weighted-sum, corresponds to average-case analysis. The appro-
priate method to use depends on the specific decision problem, particularly the
expected impact of a wrong decision.

Another important feature that has been implemented is a decision explana-
tion. The explanation facility assumes that the user expects a particular choice. The
candidate choice that scores best for the two most important objectives is considered
to be the expected choice of the user. If this is not the choice selected by the
algorithm, then the difference between the expected choice and the actual choice is
explained to the user.

This fuzzy logic decision support tool has been used to aid the knowledge
acquisition process for expert system development at NOSC. It has also been inte-
grated into two advanced mission planning aids, Theater Strike Mission Planning
and the Air Strike Planning Advisor to support the evaluation and selection of alter-
native plans and their component parts.

iii



INTRODUCTION

BACKGROUND

Humans deal naturally with subjective or fuzzy information. Typically, we
speak of tall men in easily understood conversation, although in actual fact, we can-
not precisely define what a tall man is. Likewise, military command and control, by
its nature, deals extensively with imprecise knowledge and subjective goals. The state
of a battlefield situation is usually not well known. There is never enough informa-
tion or tirive to completely analyze a situation in order to make a decision. Yet
humans tend to perform reasonably well under such circumstances, arriving at good
decisions in spite of ambiguity and confusion.

On the other hand, the volume of information and the pace of modern warfare
operations preclude the time-consuming and labor-intensive processes of the past. In
addition, despite their best efforts, human feelings and preferences remain inconsis-
tent and intransitive, often leading to judgmental errors. The battlefield of the future
has an overriding need for computerized information and decision suppor systems
that support rapid, reliable, and effective assimilation of timely information for plan-
ning, decisions, and command action.

DESCRIPTION

The fuzzy logic decision tool discussed here provides a mechanism to support
systematic decision making in knowledge-based planning systems and decision aids.
't has been applied to the process of knowledge acquisition in order to structure and
build knowledge bases as well as construct user interfaces that support subjective
decision making.

The fuzzy logic decision support tool provides (1) four different methods to
obtain a recommended decision (i.e., Min-Max Rank, Min-Max Pair-Wise, Weighted-
Sum Rank, and Weighted-Sum Pair-Wise Methods) and (2) brief descriptions for each
of the above methods. Once a method is selected, the user is prompted for the num
bers of, and labels to be assigned to, alternatives and criteria. Methods 1 and 3 (the
Rank methods) require the user to rank the criteria in order of importance. Methods
2 and 4 (the Pair-Wise methods) do not require that the user be able to rank criteria.
Instead, lie/she only must be able to compare the importance of criteria one against
the other in a pair-wise fashion. Once the user inputs the required data, the best
choice decision is produced as well as a ranked decision list. At this point the user
can select to either obtain an explanation for the recommended decision, review his/
her inputs, return to the top menu, or quit. Upon request, explanations are provided
in natural language format. If inconsistencies exist in the inputs, a list of significant
inconsistencies is provided followed by a recommended change to minimize the incon-
sistency. The user can select the recommended change and obtain a new decision,
start over, or quit.

The next sections in this report describe the decision tool, the derivation of all
the formulas and concepts used in the development of the decision tool, and two pro-
totype applications demonstrated with this tool. Appendix A provides a comprehen-
sive set of programmed examples that were generated to coincide with examples in
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the text. The VAX computer program, written in FranzLISP* (UNIX environment),
that generated these examplps is documented in appendices B and C. Appendices D
and E contain the fuzzy logic decision tool's most useful components. These listings
are stand-alone source code for the Min-Max Pair-Wise Method and the Min-Max
Rank Method, respectively, which are core algorithms for the complete decision tool.
The Weighted-Sum Method, the explanation facility, the inconsistency analyzer, and
the complete user interface are not included in these shortened versions of the source
code.

*Note: CommonLISP and InterLISP versions are also available.
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FUZZY SET THEORY

OVERVIEW

Zadeh (1965) formulated the initial statement of fuzzy set theory. Since then,
this mathematical discipline has gone through substantial theoretical development.
Correspondingly, there has been a proliferation of applications of this basic mathe-
matical framework to a variety of fields.

Ordinary set theory principles underlie mcdern mathematics. Fundaniental to
basic set theory is the notion that an item is either a member or is not a member of a
set. However, the fact is thft in the real world, membership in a set is not always so
well-defined. Fuzzy set theory is based on recognition that certain sets have impre-
cise boundaries. Fuzzy sets are those ill-specified and nondistinct collections of
objects with unsharp boundaries in that the transition from membership to nonmem-
bership in a subset of a reference set is gradual rather than abrupt.

Typically, we speak of tall men or expensive homes. Membership in such sets
or classes of objects is not characterized by either/or, but are sets in that membership
can be adequately considered in terms of degrees. A fuzzy set is characterized by a
membership function, defined as a real number in the interval [0,1]. For example, a
membership measure JA(xi) = 0.8 suggests that member xi of set X is a member of
the fuzzy set A to a degree 0.8 on a scale where zero is no membership and one is
complete membership. It should be clear that fuzzy set theory can be reduced to ordi-
nary set theory by constraining membership to the extremes of the range 0 to 1.

Just as traditional set theory operations can be precisely defined, fuzzy set
operations can be precisely defined. For example, the complement A' of a fuzzy set A
is

A'(xi) = 1 - iA(xi) for all xi in X ,

or, in abbreviated form,

pA'(X) = 1- jA(X).

The intersection of fuzzy set A and fuzzy set B is fuzzy set C = ADB where
-= mii, {)xA(X,, p.B(X~},

and the union of fuzzy set A and fuzzy set B is the fuzzy set C = AUB where

gC(X) = max {iA(X), 0B(X}.

As with ordinary set theory, fundamental notions such as distributive and
associative properties apply to fuzzy sets. In fact, fuzzy set theory has been developed
to the point that formal manipulation is fully defined as with ordinary set theory.

FUZZY VERSUS PROBABILITY THEORY

Before continuing, a fundamental clarification should be made that concerns
how the imprecision of fuzzy set theory or possibility theory differs from the
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imprecisi.- -tealt with by probability theory. Basically, the difference is that prob-
abilit- '_.ory deals with randomness of future events, whereas possibility theory
de,.,- vith the imprecision of current or past events. Randomness deals with the
uncertainty regarding the occurrence or nonoccurrence of some event, while the
imprecision of fuzzy sets deals with the membership or nonmembership of an object
in a set with imprecise boundaries.

A typical probabilistic statement is "There is a 10-percent chance that the
next person to enter the room will be over 6 feet tall." A typical possibilistic state-
ment is "John is tall." The probabilistic statement refers to a precise set of people
over 6 feet tall. The imprecision in this case has to do with the event relatIng to the
next person in the room. The fuzzy statement is not imprecise about the event in
question; it is "John." The imprecision here has to do with the vagueness of the con-
cept of "tall" itself.

There is the possibility of combining these two concepts; for example, "There
is a 10-percent chance that the next person in the room will be tall." Such theory is a
topic of considerable interest. However, the point here is that the fuzzy concept deals
with a dimension of uncertainty that is generally quite distinct from that of probabil-
ity theory.

FUZZY LOGIC

Logic is the science of the normative formal principles of reasoning. In this
sense, fuzzy logic is concerned with the formal principles of approximate reasoning,
with precise reasoning viewed as a limiting case.

In more specific terms, what is central about fuzzy logic is that, unlike classi-
cal logical systems, it aims at modeling the imprecise mode of reasoning that play an
essential role in the remarkable human ability to make rational decisions in an envi-
ronment of uncertainty and imprecision. This ability depends, in turn, on our ability
to infer an approximate answer to a question based on a store of knowledge that is
inexact, incomplete, or not totally reliable. For example, "John is much taller than
most of his close friends. How tall is John?"

There are two main reasons why classical logical systems cannot cope with
problems of this type. First, they do not provide a system for representing the mean-
ing of propositions expressed in a natural language when the meaning is precise, and
second, in those cases in which the meaning can be represented symbolically in a
meaning represpntation language (e.g., a semantic network or a conceptual depend-
ency graph) there is no mechanism for inference. The expressive power of fuzzy logic
derives from the fact that it contains as special cases not only the classical two-val-
ued and multivalued logical systems but also probability theory and probabilistic
logic.

During the past several years, fuzzy logic has found numerous applications in
fields ranging from finance to earthquake engineering. The most important and strik-
ing application has be-n the realm of fuzzy-logic-based process control. Among the
weii-publicized applications are automatic train operation, vehicle control, robot con-
trol, speech recognition, universal controllers, and stabili7ation control.

Although current applications of fuzzy logic are in the form of software algo-
rithms, it is clear that it would be cheaper and more effective to use fuzzy logic chips
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and, eventually, fuzzy computers. Such technology has been demonstrated in the
laboratory and will be available for commercial use in the near future. These develop-
ments will lead to an expanded use of fuzzy logic not only in industrial process con-
trol but, more generally, in knowledge-based systems in which the deduction of an
answer to a query requires the inference machinery of fuzzy logic. Of particular inter-
est here is the application of process control models to the softer social, economic, and
management problems. The optimization of fuzzy goals in the context of fuzzy con-
straints is a key form of management control that is at the core of the command and
control decision process.

A crucial aspect of decision making involves the handling of the information
available about the uncertainty in a decision. In many instances, the information con-
cerning the uncertainty is not strong enough to make probabilistic statements about
the situation. In other situations, particularly one of a kind, the information on
uncertainty does not have the character of a probability. As before, the statement
that "John is tall" tells us something about John's height. It gives us information
about his size or physical appearance with some uncertainty, though not of a prob-
ability kind. (Yager, 1978) has shown that possibilistic information is closely related
to an ordinal theory of uncertainty, while probability involves a cardinal theory of
uncertainty.

FUZZY OPERATIONS

Here are some fuzzy set operations of interest.

Membership Operation

Suppose we have a set of alternatives, such as a set of countries to which one
might travel. Let the set of decision alternatives be denoted by X = [xi ..... xn), which
for our specific example might look like

X = {Brazil, India, China, Mexico}

representing our potential destination countries of choice. A fuzzy subset A of X is
characterized by a membership function ji(X) that associates with every member of X
a number in the interval [0,1] that indicates the grade of membership of Xi in A. Sup-
pose, for our example, A is a fuzzy subset defined as

A = the country is near the U.S.

Then,

{j2A(xi)/xi} = {0.6/Brazil, 0.001/India, 0.9/Cuba, 1.0/Mexico }

Although the above notation is used by some authors, it is also common to simply
write

A = (0.6, 0.001, 0.9, 1.0}

where {pA(xi)} is actually meant where A is used above. Since there seems to be no
accepted standard, the simpler notation will be used for readability in this report.
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What we have in this case is pA(Brazil) = 0.6, PA(India) = 0.001, iAA(Cuba) = 0.9,
and A(MKico) = 1.0. The point is to note the increasing membership grades as a
country distance from the U.S. decreases. As mentioned before, the concept of a fuzzy
set includes that of a classical set as a special chw using a step function for the mem-
bership function. For example,

X = {1, 2, 3, 4, 51,

A = the set greater than 2,

= (0, 0, 1, 1, 1

Note that 1 and 2 do not belong to the set A, so cheir membership grade is 0, while 3,
4, and 5 have membership grades of 1 since they absolutely belong to the set A in ex-
actly the classical set sense.

Complement Operation

In the preceding example, let

A' = the country is not near the U.S.

Then, A' = 1 - ±A, so we have

A' = -0.6, 1 - 0.001, 1 -0.9, 1 - 1.0}

= {0.4, 0.999, 0.1, 0).

Intersection Operation

If A and B are two fuzzy sets defined on X, their intersection, a fuzzy set C, is
denoted by C = AMB and has a membership function that is the minimum of the
respective elements of the membership functions of A and B for all xi in X. This cor-
responds to the logical "and" operation. As an example, let X be a set of potential
weapons {xl, x2, x3}. Let A be defined as the set of inexpensive weapons. Then rela-
tive to X we might have

A = {0.6, 0.5, 0.8)

That is, this fuzzy set indicates how well each of the weapons satisfies the objective
of being cheap. Let another fuzzy set B be defined as

B = the set of weapons that are effective

= {0.7, 0.3, 0.9).

The fuzzy subset C of both inexpensive and effective weapons would be

C = An13 = {0.6, 0.3, 0.81

with the membership function p.C(X) equal to the minimum of the respective fuzzy
subsets A and B describing how well a particular weapon alternative satisfies the con-
dition of being inexpensive and effective. For example, gC(Xi) = min {0.6, 0.7)

- 0.6, means weapon x, has a 0.6 chance of being both inexpensive and effecti-e.
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Union Operation

On the other hand, if A and B are two fuzzy sets defined on X, their union, a
fuzzy set C, is denoted by C = AUB and has a membership function that i.3 the maxi-
mum of the respective elements of the membership functions of A and B for all xi in
X. This corresponds to the logical "or" operation. For this example, the fuzzy subset
C of either inexpensive or effective weapons would be

C = AUB = {0.7, 0.5, 0.9}

with the membership function gC(X) equal to the maximum of the respective fuzzy
subsets A and B describing how well a particular weapon alternative satisfies either
the condition of being inexpensive or effective.

Exponentiation Operation

Let A be a fuzzy subset over X, and let a > 0 be a scalar. The operation of
exponentiation, denoted by B = A0 is defined as a fuzzy set over X with membership
function

B(X) = pAA(X)C0

Using the same set A of inexpensive weapons above, for a = 2, we get the set of very
inexpensive (really cheap) weapons

B = A2 = {0.62, 0.52, 0.82}

= {0.36, 0.25, 0.64}.

Zadeh originally suggested using the power of 2 to represent the fuzzy linguistic
modifier very. Note that when c > 1, the effect of raising A to the power a is to reduce
the grade of membership for all the xi's, but in such a manner that those that have
large membership values are reduced much less than those that are small. This has
the effect of making the requirements more stringent: the bigger a, the more strin-
gent. For a < 1, the opposite is true.

BASIS FOR ALGORITHM DEVELOPMENT

IMPARTIAL FUZZY DECISIONS

One type of decision consists of a situation in which a group of objectives is
given in terms of requirements that the selected solution should have, for example,
the desired weapon should be inexpensive, effective, reliable, available, etc. The deci-
sion process is to select the candidate that best satisfies all these objectives. As
Bellman and Zadeh suggest in their 1970 paper that uses the rule of implied conjunc-
tion, these objectives are stated as

C1 and C2 and C3 ....
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If we associate with each objective a fuzzy subset over the set of potential candidate

alternatives, then, in terms of fuzzy subsets, our decision D becomes

D = ClnC2nC3 ...,

where Ci is a fuzzy subset of the decision alternatives whose membership function
indicates how well each of the candidates satisfies that objective. In addition, the
decision D is also a fuzzy subset over the alternatives whose membership function
pD(X) indicates how well each of the alternatives satisfies the set of objectives. We
then select the alternative that has the highest grade of membership in D as the best
alternative, because it satisfies the set of objectives with the highest value. This deci-
sion rule is referred to as impartial because each objective is treated equally.

As an example, suppose that the set of possible decision alternatives is

X = {merchant ship, surface warship, submarine}.

Suppose that a particular acoustic measurement is correlated with the above ship
classes as follows:

A = {0.5, 0.7, 0.8}.

That is, this fuzzy set indicates how an observed acoustic signature tits three poten-
tial classification hypotheses. The fuzzy membership data could be the result of an
operator's linguistic description of his/her interpretation of observed data, or it could
be the result of matches returned from a fuzzy query into an acoustic database. In the
absence of other data, our current best guess at the classification of the acoustic con-
tact would be a submarine. Suppose, however, that an additional classification based
on an electronic emission were also available as follows:

B = {0.8, 0.6, 0.7}.

This indicates the best guess at a contact's identity is merchant ship. Using the
concept of intersection introduced above, we can create a new fuzzy set of a joint
acoustic and electronic contact. This fuzzy subset would be given by

C = AnB = {0.5, 0.6, 0.7},

that is, the membership function gC(X) indicates how well a contact fits each of the
hypothesized ship categories combining both acoustic and electronic classification
estimates. Considering both types of information, the submarine still is most likely.

The best decision is submarine because it corresponds to the decision alterna-
tive with the highest value, namely 0.7. Note that the procedure presented so far is
under the condition that all information is equally important, which is usually not
the case. But, before proceeding, let us make some observations about fuzzy deci-
sions.

Based upon the definition of the intersection operation, we can observe the

following:

The decision is made by

1. selecting for each alternative xi, its minimum membership value in any of
the objectives;
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2. then selecting as our optimal decision the alternative with the maximum
membership in D, the decision set.

In the previous example, the maximum membership grade of 0.7 in the decision set is
the minimum of the membership grades for a submarine (i.e., the minimum of the
values 0.7 and 0.8). For this reason, this decision rule is also referred to as the max-
min method. Note this method should be distinguished from the usual game-theoretic
min-max method.

PARTIAL FUZZY DECISIONS

The concept of using the conjunction or intersection of goal, objective, and
constraint sets that are subsets of some space of decision alternatives was first formu-
lated by Zadeh and Bellman (1970). The decision is fuzzy if any of the goal, objective,
or constraint subsets is fuzzy.

In many cases, the importance of the goal, objective, or constraint sets enter-
ing the fuzzy decision process will not be of equal importance. If a particular objec-
tive is of great importance, we want to be very unlikely to select any alternative as
our solution that has a small membership value in this objective. This can be accom-
plished by making those alternatives that are low in important objectives have a low
membership in D, thereby minimizing the chance of their being selected as the best.
From statement (1) of the decision rule above, we can conclude that the membership
function for each alternative in D is determined by its lowest membership in all the
objectives. Therefore, if we make the grade of membership of the alternatives that are
bad in important objectives even lower, they will be less likely to be selected as the
optimal alternative.

Recalling the effects of raising a fuzzy set to a power, explained previously, we
see that if we assign to each objective a number a > 0 indicative of its importance,
we can obtain the above desired effects. That is, if we associate with each objective an
cr (the more important the objective, the higher the a) and then consider our decision
as

D = C11 lfC2a 2n ... Cn n,

where

ot, 3> 0i 1,2, ... n,

ai= 
1n

we have a situation where alternatives that are weak in important constraints
become even less appealing as potential solutions. Furthermore, the linguistic charac-
terization associated with exponentiation operations reinforces this approach in the
sense that the more stringent we are enforcing ouir objective, the more important it
is. Thus, for the fuzzy set A of inexpensive weapons, with a = 2, we would call A2
the set of very inexpensive weapons, while a = 1/2 would give us the set A1/ 2 of more
or less inexpensive weapons.

Therefore, in a sense we have a hierarchical system in that each alternative is
first rated on its ability to satisfy each of the objectives and then the objectives are
rated as to their importance.

9



Now let us suppose for our previous example that there exists another intelli-
gence source that can also produce fuzzy membership estimates for the three ship
classes as follows:

C = {0.9, 0.5, 0.4}.

Now let us presume that acoustic classification is inferior to this intelligence
source, but that electronic classification is superior. In othei words, we might want
to raise the membership function for acoustic classification to a more stringent
requirement, such as o = 1/2, whereas electronic classification might have the less
stringent requirement of 2. Applying the methodology of Yager and Saaty, the deci-
sion set D is formed as follows:

D = A1/2nB2iC1,

or

D = {0.5, 0.7, 0.8}1/2n{0.8, 0.6, 0.7}2n{0.9, 0.5, 0.4}1

D = {0.70, 0.83, 0.89}a{0.64, 0.36, 0.49}o{O.9, 0.5, 0.4)},

= {0.64, 0.36, 0.4}.

Because of its relative importance, the electronic emissions classification overrides
the other two data sources and favors the decision of merchant ship as the most prob-
able contact. It should be noted that the above example, as well as others in this
report, are used for illustrative purposes only and are not intended to represent the
real complexity of the actual problem cited.

The next problem is that of obtaining a scale on which we can measure the
importance of each objective. The first method discussed is the Pair-Wise comparison
method developed by Saaty.

PAIR-WISE OBJECTIVE EVALUATION

Saaty (1972, 1977) has developed a procedure for obtaining a ratio scale for a
group of elements based upon a paired comparison of each element. This method has
also been used by Yager (1977) to obtain the values of subjective probabilities from a
decision-maker.

Assume we have m objectives, and we want to construct a scale rating these
objectives as to their relative importance to a decision-maker. We ask the decision-
maker to compare the objectives in m(m-1)/2 paired comparisons. In particular, for
each case where objective i is more important than objective j, a value aij is assigned
from table 1.
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Table 1. Level-of-importance definitions.

Level of Importance Definition

1 Equal importance
3 Weak importance of one over the other
5 Strong importance of one over the other
7 Demonstrated importance of one over the other
9 Absolute importance of one over the other

2,4,6, Intermediate values; between two adjacent judg-
8 ments

Having obtained the above judgments, an m by m matrix B is constructed so that

1. bii = 1,

2. bij = aij,i#j,

3. bji = 1/aij.

Saaty then has shown that the eigenvector corresponding to the maximum eigenvalue
of B is a cardinal ratio scale for the objectives compared.

As before, assume three information sources {Acoustic, Electronic, Infrared}
are being rated on a scale as to their value in classifying ships:

Electronic is weakly more important than Acoustic. a21 = 3

Infrared is somewhere between equal and weakly
more important than Acoustic. -. a31 = 2

Electronic is weakly more important than Intelligence. a a23 =3

Then our matrix B of compared comparisons is

X Y Z

B= Y 3 1 3Z 2 1/3 1

We then solve the eigenvalue problem

BW = XmaxW

and obtain the normalized eigenvector corresponding to xmax. For our example,

.16W = 0.59)J

\0.25

11



where the components have been normalized to sum to 1. We now have a cardinal
scale rating for the acoustic, electronic, and infrared information sources. In this
case, our decision set becomes

D = A0.16nB059aC0 2 5

or

D = {0.5, 0.7, 0.8)0 1 6 n{0.8, 0.6, 0.7}0.5 9 n{0.9, 0.5, 0.4}0.25

= {0.89, 0.95, 0.96}0{0.88, 0.74, 0.81}n{0.97, 0.84, 0.80}

- {0.88, 0.74, 0.80}.

As before, the electronic emissions classification "overrides" the other two data
sources and favors the decision of merchant ship as the most probable contact.

We now propose to use this same methodology to compare the importance of
fuzzy constraints in the multi-objective decision problem. That is, we shall compare
the objectives and obtain a scale rating for each of the objectives as to its importance.
The difference is that instead of using the unit eigenvector, we shall use the eigenvec-
tor E,

E= (12 =nV = nw2
Oin  nwn

where V is the normalized eigenvector, because we want the average importance to be
1, so that if all the objectives are equally important, the Cki = 1 for all i, and therefore
all the Cili are not changed.

An Example

As an example, consider the following problem. Suppose a blue submarine is
trailing a red submarine, and a maneuver is detected. The blue commander must
react to this event by making a decision to stop, turn, or no change. In making the
decision, the commander has the following )bjectives to satisfy:

1. Avoid Collision,

2. Avoid Detection,

3. Keep Contact,

4. Keep Station.

Suppose the commander evaluates the candidate decisions on a subjective
basis with respect to the four objectives as follows:

12



CI = {0.5, 0.7, 0.3},

C2 = {0.5, 0.4, 0.8},

C3 = {0.2, 0.01, 0.6},

C4 = {0.6, 0.4, 0.9}.

The numbers above can be considered the likelihood or probability that a
given choice will satisfy a given objective. For example, the decision to stop, which is
the first pu-.-ile choice, CI, will result in a 50/50 chance of avoiding a collision.
Hence, the first entry for C1 is 0.5. Alternatively, based on a more subjective scale as
suggested in table 2, we might say that there is a moderate risk of a collision if a sub-
marine attempts to stop behind one that is maneuvering.

Table 2. A linguistic likelihood scale.

Term Value

no change ........................ 0.0
unlikely .......................... 0.1
doubtful .......................... 0.2
uncertain ........................ 9
possible .......................... 0.4
moderate risk ..................... 0.5
significa t chance .................. 0.6
likely ............................ 0.7
probable ......................... 0.8
very probable ..................... 0.9
certain ........................... 1.0

Observe that the best decision is no change based on the min-max utility func-

tion,

D = ClnC20C3C4

= {0.2, 0.01, 0.3}.

That is, the worst consequence under no change is a collision may not be avoided.
However, the likelihood of this happening is not as great as losing contact, which is
the worst consequence of the decision to stop or turn. Note that this procedure
assumes that all of the objectives are equally important. This is usually not the case.
In our example for instance, we would assume that avoiding a collision is normally
much more important than the other objectives.

Accordingly, let us assume that each of the objectives is of differing degrees of
importance. Each of the three objectives will be compared with each other as to
importance in the selection of the candidate decision. A 4 by 4 matrix then is formed
where element aij is the relative importance of objective Ci compared to objective C.
Let us assume for our case the following Pair-Wise comparison of %Asvc -"-" t
the commander's priorities (see table 1):

13



Avoid Collision has Strong Importance over a 12 = 5
Avoid Detection.

Avoid Collision has Weak Importance over a 13 = 3
Keep Contact.

Keep Contact has Demonstrated Importance over - a a32 = 7
Avoid Detection.

Avoid Collision has Equal Inportance to Keep - a14 = 7
Station.

Keep Station has Demonstrated Importance over - a a42 = 7
Avoid Detection.

Keep Station has Weak Importance over Keep -. a43 = 3
Contact.

A 4 by 4 B matrix of paired comparisons is formed where the element bij is the
relative impot ance of objective Ci to Cj. Recalling that bji 1/aij, we have

1 5 3 17
1/5 1 1/7 1/7

B= 1/3 7 1 1/3]
1 7 3 1__

The maximum eigenvalue for thib matrix is 4.22, just slightly larger than
m = 4, the number of objectives. The difference in these two values is a measure of
inconsistency in the ratings. Saaty (1977) proposed using

s = (kma x - m )/(2m- 2)]1/2

as a test statistic for consistency. The nearer s to 0, the better; below 1 is probably
OK; above 2 indicates severe inconsistency in the ratings. The consistency statistic in
this example is 0.19, which is OK.

The eigenvector multiplied by the number of objectives becomes the set of
weighting exponents. These are

a 1 = 1.48

t2 = 0.20

03 = 0.74

04 = 1.58

indicating that keeping station is most important, followed closely by avoiding colli-
sion, whereas keeping contact and avoiding detection are not as important. This or-
dering is the relative importance to the person or persons (i.e., committee) making
the paired comparisons. The relative importance can also vary according to the par-
ticular circumstances under which the decision is being made. For example, it may be
more important to avoid a collision than lose contact in a cold war situation, but the
reverse could be true in a hostile situation.
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The decision model for this example becomes

D = Cl1fC 2a2fnC 3 f3fnC 4 a4

SC 1 1.4 8flC 20.20 aC 30-74flC41. 58

= {0.5, 0.7, 0.3}l 48 0{0.5, 0.4, 0.8}0-20 n{0.2, 0.01, 0.6}0.74

n{0.6, 0.4, 0.9}1 -58

= {0.36, 0.6, 0.17}n{0.87, 0.83, 0.96}{0.3, 0.03, 0.68}
rl{0.45, 0.24, 0.85}

= {0.3, 0.03, 0.17}.

Thus stop is now the best decision. That is,

D = max{min {Cii}} =max {0.3, 0.03, 0.17} = 0.3.

Let us analyze this decision. In the previous example, we selected no change; here we
select stop. The reason for this change in selection is that the importance of avoiding
a collision now weighs heavily against our previous decision of no change. That is,
the minimum rating of no change is reduced from 0.3 to 0.17 because of the impor-
tance of avoiding a collision. The lesser importance of keeping contact now makes
stopping a better choice. That is, the minimum rating of stop is raised from 0.2 to 0.3
because keeping contact is reduced in importance. Notice also that the minimum rat-
ing of a turn also occurs for keeping contact, but this rating is so low, namely 0.01,
that raising it to 0.03 made no difference.

Observations

Fuzzy sets provide a very fertile tool with which to investigate the multi-
objective decision problem. One reason for this is the fa-t that by using a fuzzy set we
are dealing in a very universal concept of the degree to which an alternative satisfies
an objective, something that can be understood for any objective. A second reason is
that fuzzy set theory provides a mathematical structure for manipulating vague ideas
that become very common in complex multi-objective problems. Also, as in the case of
decision-making under uncertainty (Miller & Starr, 1969), there are numerous valid
ways in which to make decisions in multi-objective situations, the preference being a
function of the decision-maker's nature.

The method discussed incorporates crucial concepts in multi-objective
decision-making. First, the idea of comparing the objectives as to their importance
incorporates to some degree an ability to account for trade-off effects between the
objectives; more specific methods are necessary, and we hope will be developed.
Second, the manner in which the power of each objective is included in the model cor-
responds to a hierarchical structure in the sense that each of the fuzzy sets corre-
sponding to satisfaction of the objectives can be evaluated by various experts, and
then these objectives cani be compared by a next higher level in the decision process.
Third, the methodology for evaluating the actual decision is basically a min-max pro-
cedure over multiple objectives.

15



RANK ORDER OBJECTIVE EVALUATION

The Zadeh and Bellman (1970) approach to multi-objective decision-making
has the advantage of requiring only an ordinal evaluation or rank ordering of the
preference information but the disadvantage of not allowing one to include the fact
that the objectives differ in importance. The Yager (1977) method is just the opposite.
It allows one to capture differing importances between objectives, but it requires
stronger information on preferences. In this section, a model that has the advantages
of both is suggested. This model will allow one to include the differing importance
factor while still only requiring a rank ordering for preference information.

Assume that {S} is the finite set of elements used to indicate preference infor-
mation. Furthermore, assume that the only structure available on {S} is a linear
ordering. Let Y = {A1, A2 , ..., Am } be the set of objectives to be satisfied, and let
{X} be our set of alternatives. Assume that each objective is represented by a fuzzy
subset of X with grades selected from S. Thus, for any x F X, Ai(x) E S indicates the
degree to which x satisfies the objectives specified by Ai. Let G bc a fuzzy subset of Y
in which G(Ai) F S indicates the importance of the objective Ai. We shall denote G(Ai)
= cti c S. Thus, we have for each objective a measure of how important it is to the
decision maker for this decision.

Based upon the approach suggested by Yager, and other multiple objective
methods that include importance, (Cochrane & Zeleny, 1973), (Keeney & Raiffa,
1977), (Starr & Zeleny, 1977), and (Zoints, 1978), a general form for this type of deci-
sion function is conjectured:

D(x) = M(AI(x), al) and M(A 2(x), 02) ... and M(Am(x), an),

where M(Ai(x), ai) indicates objective Ai evaluated at alternative x, modified by its
importance. In Yager (1977) as previously discussed, it is suggested that M(Ai(x), cii)
= (Ai(x))Oi. It has also been indicated that, however, this type of operation is not
available to us when Ai(x) and oi are drawn from the finite linearly ordered set {S}.
We must find some operation to replace this exponentiation. In a discussion of the
implication operation (Yager, 1980) has shown that xY is comparable to x' U y, which
is the implication operation in two-valued logic. That is, they both generally act in
the same manner. Whereas xy requires more than aii ordinal scale to implement,
x' U y needs only a finite linearly ordered set on which the appropriate negation can
be defined. This leads us to conjecture that in S, M(Ai(x), oi) = ai' U Ai(x). Thus, we
are left with the conclusion that an appropriate model for including importances
when our preferences are in S is

D = (a U A1)fl(t U A2)a ... fl(otn U AM)

m
D = 0 (ot U Ai)

i=l

where ct' U Ai = Ci is a fuzzy subset of X defined as follows: Ci(x) = i U Ai(x).
The optimal alternative is the x _ X that maximizes D.
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Let us examine this model to assure it is not being counterintuitive. First,

D = ClnC2C3O... aCm,

where

D(x) = Min {Ci(x), C2(x), ..., Cm(x)}

The implication of this is that the representative of x in D is selected as the Ci(x) that
has the smallest value. Thus, Min Ci(x) becomes the most significant element in
determining x's contribution to the overall decision function D. We would hope that
as an objective becomes more important it plays a more significant role in determin-
ing D. Recalling that Ci(x) = ai' U Ai(x) = Max {ai', Ai(x)}, consider the case when
Ai is the least important objective; that is, ci = 0, the minimal element of S. Since
negation is ordered revising, this implies oi' = 1 and hence Max {1, Ai(x)} = 1
= Ci(x). Since D(x) =Min {Ci(x)}, it is very unlikely that Ci(x) will be the determin-
ing value of D(x). More generally, as the ith objective becomes more important, ki

increases, causing c1 to get smaller, which in turn causes Max {a, Ai(x)) = Ci(x) to
be decreasing and also increases the likelihood that Ci(x) = Ai(x). Since D(x) = Min
{Ci(x)}, it increases the possibility of D(x) being determined by Ai(x), the grade of
membership of the most important objective. Furthermore, since the optimal alterna-
tive is xopt such that

D(xopt) = Max D(x),

x EX

we see that for a given y e X, if Ai(y) is low in the more important objective, it is
unlikely that y will be selected as the optimal solution. We can see that the proposed
model satisfies our intuitive requirements and allows us to include importance meas-
ures defined by operations performed on linearly ordered finite sets.

An Example

Assume, as before, we must select a submarine maneuver from the set

X = {Stop, Turn, No Change) ,

given the four objectives

A = {Avoid Collision, Avoid Detection, Keep Contact, Keep Station}.

A set S = Isi} is designated to measure preferences. A particular example of a prefer-
ence set is

S = {None, Very Low, Low, Medium, High, Very High, Perfect)

or, some numerical equivalent, such as

S= {0, 1, 2, 3, 4, 5, 6.
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First, we rate the alternatives with respect to the objectives:

&Turn NoChange

Avoid Collision = A1 = {Medium, High, Low}

Avoid Detection = A2 = {Medium, Low, Very High}

Keep Contact = A3 = (Very Low, None, High}

Keep Station = A4 = {High, Low, Perfect}

Next we --valuate the importance of each objective:

Avoid Avoid Keep KeepObjectives-- £fdfCn nD1 act t ;f

Importance of
Objectives {Very High,Very Low, Medium, Perfect}

In our general notation,

o1 = Very High, U2 = Very Low, 03 = Medium, 04 = Perfect,

or

of1 = s5, Q 2 = Sl, 013 = s3, 04=s6 •

Since the negation in set S is order reversing, Si' = S6-i, then

k1'= Sl, or2'= S5, 0t3' = S3, o14' = SO ,

or

o1' = Very Low, 02' = Very High, 03' = Medium, Q4' = None.

Since Ci= ai' U Ai, we have

Turn No hange

C1 = Very Low U {Medium, High, Low}

(Medium, High, Low}

C'2= Very Htigh U (Medium. Low, Very High}

{Very High, Very High, Very High}
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&Turn

C3= Medium U {Very Low, None, High}

{Medium, Medium, High}

C4= None U {High, Low, Perfect}

{High, Low, Perfect}

Calculating D(x) = Min {Ci(x)J we get
i

Turn t _Cha n
D = {Medium, Low, Low}

Thus our selection based upon this model would be stop.

The basic reason for selecting stop is that its worst rating is for the objective
of keep contact, but this objective is of only medium importance. Stop is selected over
turn because turn gets a low rating in the most important objective, keep station. If
the rating for turn in this objective were medium rather than &ow; it would then be
tied with stop. Alternatively, if the objective keep station had only been of say,
medium importance, then the effect of the low rating of turn in this objective would
not be as significant, and the two would again tie. If, however, the objective of avoid
collision, in which no charge performed badly, were decreased in importance, this
would then also have the effect of tying no change and stop.

A special procedure must be followed for selecting the optimal alternatives if
we have ties. Assume that x, y E X are such that

D(x) = D(y) = Max (D(Z)).

zrX

Since

D(x) = Min {C1(x)}

there exists some k such that Ck(x) = D(x). Similarly there exists some g such that
Cg(y) = D(y). Let ^ D(x) = Min {Ci(x)}, and let "D(y) = Min {Ci(y)}. Then, we

i3k ig
compare ^ D(x) and ^ D(y). If ^ D(x) > D(y), for example, we select x as our
optimal. If, however, - D(x) = ^ D(y), then there exists some r and e such that
" D(x) = Cr(x) = "D(y) = Ce(y). Then we formulate ^ D(x) = Min {C(x)} and
- D(y) = Min {Ci(y)}. We then compare " D(x) and ^ D(y). We continue in this

i g,e
manner. If after exhausting all the objectives we still cannot distinguish between x
and y, then they are deemed tied.
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There exisN' an alternative approach to adjudicating ties. Since the scale used
to measure our preferences was not a very fine scale, we may allow the decision
maker to use a refinement of the scale to help in ties.

Assume x and y are tied for the optimal value in D. Thus, there exists some
k such that D(x) = Ck(x) = Min {Ci(x)}, and there exists some g such that D(x)
= C&1y) = Min {Ci(y)}. We may now ask the decision maker to make a finer distinc-
tion between these two values. That is, though he/she selected the same s E S to
evaluate Ck(x) and Cg(y), it may be possible for the decision maker to say that, for
example, Ck(x) > Cg(y). That is, it may be worthwhile to expend the effort to make a
finer distinction between these two situations now that the decision has been reduced
to selection based upon this information.

Observations

The model described above works in the following mann, -. For a particular
objective, the negation of its importance acts as a barrier such that all ratings of al-
ternatives that are below that barrier become equal to the value of that barrier. That
is, we disregard all distinctions less than the barrier while keeping distinctions above
this barrier This works in the same manner as the classroom grading procedure of
lumping all students whose grade averages fall below 60 into the F category while
keeping distinctions of A, B, C, and D for students with grades of at least 60. In our
model, however, this barrier varies, depending upon the importance of the objective.
In particular, the more important the objective, the lower this barrier and thus, the
more levels of distinction. Hence, as an objective becomes less important, we raise the
distinction barrier, which penalizes the alternative less if it fails in this objective. In
the extreme, if the objective is totally unimportant, the, the barrier is raised to its
highest value, and all alternatives are given the same rating, and no distinction is
made based on this objective. If, however, the objective is most important, all distinc-
tions are kept.

This model gives us an optimal solution. In particular, for any two alterna-
tives x and y, if Ai(x) _ Ai(y) for all i, then D(x) _> D(y).

To see this, we note first that D(x) = Min {Ci(x)}, and D(y) = Min {Ci(y)},
and if Ci(x) _ Ci(y) for all i, then D(x) > D(y).

Furthermore, since Ci(x) = ci' U Ai(x), and Ci(y) = ai' U Ai(y), then Ai(x)
Ai(y) implies Ci(x) : Ci(y). These two facts prove our observation.

Second, our solution is independent of irrelevant alternatives. That is, if we
are given some set of alternatives X and find that our optimal solution is xopt E X
and then if we consider some extended set of alternatives Y = X U Z, our optimal
solution will either be xopt or some member of Z; never some other member of X.

To see this, we note that if D(x) is the value of x in our decision function when
considering the set X, and if E(x) is the value of x in our decision function when con-
sidering the alternate set Y, D(x) = E(x) for all x e X, and hence the x F X that is
maximal over X is the same when considering X and Y. The only possible source of an
alternative greater than xopt is one in Z.

Finally, the model also has the property that the more important an objective
is, the more significant its effect on D.
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UTILITY FUNCTIONS

A utility function provides the mechanism to aggregate multiple objectives or
constraints in the decision-making process. An open question is how to reflect the
personal bias of the decision maker toward pessimism or optimism. Up to this point
the min-max method has served as the utility function or aggregation operation in
the fuzzy logic examples. This method selects as the best decision the one that mini-
mizes the worst consequence of a decision. That is, the and or min operator selects
the objective that is satisfied the least to judge a given alternative. This utility func-
tion implements a worst-( ,se decision rule that is at the extreme of pessimism or con-
servatism. It might be considered most appropriate in a survival situation.

At the opposite extreme, the decision maker might require that a decision sat-
isfy at least one of the objectives. This decision rule is implemented by "or"ing the
objectives. This Pollyanna form of decision making assumes that the best result that
can happen, will happen. Of course, we all know how often that happens. How many
investors sold short before the recent market crash?

Most of us decision makers, like investors, fall somewhere between the two
extremes mentioned above. It depends on the degree to which we are willing to gam-
ble in a given situation. We might be satisfied if most, many, at least half, or more
than four of the objectives are met. This suggests that selecting the appropriate util-
ity function for a particular decision maker in a given situation is in itself a fuzzy
decision problem. Several approaches to this problein have been taken. Zimmerman
and Zysno (1980) have proposed an interesting but somewhat computationally inten-
sive utility function called the compensatory and. This function allows for compensa-
tion for a low degree of membership in one constraint set by a higher degree of
membership in another, whereas the logical fizzy and operation corresponding to
min does not.

Yager (1981) introduced yet another new utility function called ordered
weighted average or weighted sum. An ordered weighted sum F is defined by

F(al, ..., an)= Ywibi,
i

where

Xwi=1

and bi is the ith largest element in the sorted collection (al ...an). B = (bI...bn) is the
vector of descending-order sorted elements of the arguments of F.
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An Example

Consider the previous example where we had

&QU Turnl

CI = {Medium, High, Low}

C2 = {Very High, Very High, Very High}

C3 = {Medium, Medium, High}

C4 = {High, Low, Perfect}

or, in numerically equivalent terms,

C1 = {3, 4, 2}

C2= {5, 5, 5}

C3 = {3, 3, 4}

C4= {4, 2, 6}

For the first alternative, stop, we have F(al, a2, a3, a4) = F(3, 5, 3, 4). Suppose the
weight averaging or summing operator is W = (0.1, 0.3, 0.2, 0.4). We form the
ordered argument vector B1 = (5, 4, 3, 3) by sorting the ai's in descending order.
Then applying W to obtain F we have

F(B1) = (0.1*5 + 0.3*4+ 0.2*3 + 0.4*3) = 3.5.

We likewise compute F for each alternative to obtain

STurn Nohange

D = {3.5, 3.1, 3.7}

In this case, we would select no change as the most appropriate alternative.

Note W = (1, 0, 0, 0) corresponds to pure "or"ing, while W = (0, 0, 0, 1) cor-
responds to pure "and"ing. A pure weighted sum or mean operator would be
W = (1/4, 1/4, 1/4, 1/4). Thus, by proper choice of the W weight summing operator,
we can vary the results of aggregation between the two extremes of max or "oring
and min or "and"ing. While ordered weighted sum implements any degree of opti-
mism or pessimism, an open question remains as how to obtain the weights that
reflect the personal bias of the decision maker in a given situation. This is a topic of
current research.

The complete algorithm described in appendices B and C gives the user a
choice between "and"ing, which corresponds to worst case decision making, and pure
weighted averaging, which corresponds to expected case decision making.
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EXPLANATION FACILITY

The explanation facility makes the assumption that the user expects a particu-
lar alternative as the best choice. In particular, it is assumed that the weighted-sum
method is a natural heuristic that approximates the user's expectations. When the
user actually selects a weighted-sum method for a particular problem, the explanation
is based on the two prominent criteria or objectives that influenced the decision. If
another decision algorithm is selected, in particular, the min-max method, then calcu-
lations are done for the min-max method and the weighted-sum method. If the two
aigorithms agree, then the explanation is straightforward. If they disagree, then the
explanation is based on the difference generated by the two algorithms. This tech-
nique is described further in the following section.

Explanation for the Min-Max Rank Method

If a user's choice is also the choice selected by the min-max method, the
explanation will just state that "Taking the importance of the objectives into account,
alternative ai has the highest overall rating, hence, it is the best choice." Explanation
here is deliberately brief, since very little explanation is needed if the best choice is
obvious.

If the user's expected choice is not selected by the method, the explanation
facility will compare the expected choice with the choice selected by the method. For
example, let aj be the expected best alternative, and ai be the actual best as selected
by the method. A typical explanation would be "Alternative aj is better than alterna-
tive ai in objectives ck,...,cm but since alternative ai satisfies objectives cn,...,Cp
more closely than alternative aj, alternative ai is the better choice."

For each rejected alternative, the explanation will output the reason for the
alternative being rejected. For example, "Alternative aj is rejected partially because of
a low rating in objective ck." The explanation for rejected alternatives does not
depend on whether the expected choice is actually the best choice or not.

As stated above, the explanation facility uses the weighted-sum heuristic to
determine the expected best choice of the user. This is best explained by an example.
Recall our previous example where we had the following input:

Tu n Chanze

Avoid Collision = (Medium, High, Low}

Avoid Detection = {Medium, Low, Very High}

Keep Contact = (Very Low, None, High}

Keep Station = (High, Low, Perfect}

23



Avoid Avoid Keep Keep

Importance of
Objectives = {Very High, Very Low, Medium, Perfect)

In numerically equivalent terms we have

No Importance
Turn Chng of Objctive

Avoid Collision = {3, 4, 2} 5
Avoid Detection = {3, 2, 5} 1
Keep Contact = {1, 0, 4} 3
Keep Station = (4, 2, 61 6

Taking the importance or rankings of the objectives into account, the min-max
method transforms the input as follows: (see example in Rank Order Objective Evalu-
ation section)

Turn Nobhngr

Avoid Collision = {3, 4, 2}
Avoid Detection = {5, 5, 5)
Keep Contact = {3, 3, 4)
Keep Station = {4, 2, 6)

For this example, the decision set is

D= {3, 2, 2},

from which the algorithm would select stop. Now, for each alternative, we can com-
pute its weighted-sum according to the following formula:

weighted-sum = xi +x2+x3+x4

where xi = degree to which the alternative satisfies criterion i after the transforma-
tion. For this example, the weighted-sums for the alternatives are

Stop = 3 + 5 + 3 + 4 = 15
Turn = 4 + 5 + 3 + 2 = 14
No Change = 2 + 5 + 4 + 6 = 17

No Change has the highest weighted-sum or the highest overall score; hence,
the program will assume that no change is the expected choice of the user. The expla-
nation generated for this case is as follows:
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EXPLANATION

The No Change alternative is a better choice than Stop in satisfying
the Avoid Detection, Keep Contact, and Keep Station objectives.
But, since Stop satisfies the Avoid Collision objective more closely
than No Change, Stop is the better choice.

The Turn alternative is rejected partially because of a low rating in
the Keep Station objective. The No Change alternative is rejected
partially because of a low rating in the Avoid Collision objective.

Explanation for the Min-Max Pair-Wise Method

The explanation facility will output the rating for each alternative and pro-
duce a natural-language comparison of the two alternatives with the highest ratings.

Co-sider the previous example in the section, Pair-Wise Objective Evaluation.
The pair-wise algorithm generated the following ratings for the three alternatives:

Alternative Rating

Stop 0.3
Turn 0.03
No Change 0.17

The top two choices are stop and no change. The explanation facility will just
compare these two. The output will be

EXPLANATION
The No Change alternative is better than Stop in satisfying the
Avoid Detection, Keep Contact, and Keep Station objectives. Stop is
better than No Change in satisfying the Avoid Collision objective.
With consideration to the overall importance of Avoid Collision ver-
sus Avoid Detection, Keep Contact, and Keep Station, the degree of
superiority of Stop over No Change in Avoid Collision is deemed to
be greater than the degree of superiority of No Change over Stop in
Avoid Detection, Keep Contact, and Keep Station. Hence, Stop is
preferred over No Change.

For cases in which the top two alternatives have the same or close-to-the-same rat-
ings, the explanation will state such.
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For example, suppose we had

Alternative Rating

Stop 0.31
Turn 0.03
No Change 0.29

EXPLANATION

Since the difference between No Change and Stop is small, and due
to the uncertainty of input, No Change and Stop are equally pre-
ferred.

The Pair-Wise method requires the user to make paired comparisons of all
objectives. Often, inconsistencies arise from these comparisons.This is illustrated by
the following example:

Let cl, c2, c be the three objectives. The Pair-Wise comparisons are

1. cl is more important than c2 with a degree 5.

2. c2 is more important than c3 with a degree 6.

3. c is more important than cl with a degree 5.

Clearly, it is inconsistent that ci > c and c > c3, but c > c1, where ">"
stands for more important than. These types of inconsistencies arise frequently,
especially when the number of objectives becomes large. In fact, if there were m
objectives, there can be up to 0 ((m,3)) number of inconsistencies.

The explanation facility should warn the user when inconsistencies occur;
however, it would be unwise to output all of the inconsistencies, since there can be
such a large number of them. Instead, the explanation will try to find the two objec-
tives that are most responsible for the inconsistencies. The facility will output only
those inconsistencies in which the two objectives are directly involved.

The explanation facility will suggest that the relation between the two objec-
tives be changed so the overall inconsistency can be reduced. For the case in which
the changing of relation between the two objectives has no effect on the final ranking
of alternatives, the explanation will not advise the user of the inconsistencies.

To continue with our previous example, suppose we have the following Pair-
Wise comparisons:

Avoid Detection has Strong Importance over -. a21 = 5
Avoid Collision.

Avoid Collision has Weak Importance over a 13 = 3
Keep Contact.
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Avoid Collision has Equal Importance to a 814 = 1
Keep Station.

Keep Contact has Strong Importance over a32 = 5
Avoid Detection.

Keep Station has Weak Importance over Avoid a42 = 3
Detection.

Keep Contact has Equal Importance to Keep - a34 = 1
Station.

PAIRED-COMPARISON OF CRITERIA

1 2 3 4

1 1 1/5 3 1
2 5 1 1/5 1/3
3 1/3 5 1 1
4 1 3 1 1

1 = Avoid Collision
2 = Avoid Detection
3 = Keep Contact
4 = Keep Station

There is inconsistency in the matrix of paired comparisons. The following list of
inconsistencies is not exhaustive:

An inconsistency is as follows:
Keep Contact is more important than Avoid Detection by degree 5.
Avoid Collision is more important than Keep Contact by degree 3.
But Avoid Detection is more important than Avoid Collision by degree 5.

An inconsistency is as follows:
Keep Station is more important than Avoid Detection by degree 3.
Avoid Collision is more important than Keep Station by degree 1.
But Avoid Detection is more important than Avoid Collision by degree 5.

To minimize the inconsistencies listed anove, it is recommended that the following
change be made:

Avoid Collision is more important than Avoid Detection with degree
7 a12 = 7. Would you like to make this change? yes

• decision ratings range from 0 to 10 •

• 0 - very poor ,
10 -. excellent
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RANKED DECISION LIST

Quantitative Subjective
Alternative Decision-Value Decision-Value

1. Stop 2.9 fair
2. No Change 1.8 poor
3. Turn 0.1 very poor

The mathematical basis for inconsistency analysis is developed in the section
on Methods for Finding the Worst Inconsistencies.

Explanation for the Weighted-Sum Rank Method

The following is an example of the weighted-sum rank model. Suppose that the
input is as before:

No Importance

Turn Chan of Objective

Avoid Collision = {3, 4, 2} 5
Avoid Detection = {3, 2, 5} 1
Keep Contact = {1, 0, 4} 3
Keep Station = {4, 2, 6} 6

For each alternative, a weighted-sum rating is computed according to the for-

mula:

weighted-sum rating = wl*Cl + w2"c2 + w3*c3 + W4*c4

where ci = degree to which the alternative satisfies objective i, and wi = the rank-

ing or weight of objective i.

For the above example, the weighted sums are

Alternative Ratin

Stop 5*3 + 1*3 + 3*1 + 6*4 = 45
Turn 5*4 + 1*2 + 3*0 + 6*2 = 34
No Change 5*2 + 1*5 + 3*4 + 6*6 = 63

In this case, no change has the highest weighted sum; it is selected by the weighted-
sum method.

As before, the explanation facility makes the assumption that the user expects
a particular alternative as the best choice. In particular, it further assumes that
expected outcome of the user is based on the 2-weighted-sum heuristic. Again, this
heuristic is explained by an example. Referring to our previous example, keep station
and avoid collision are the two most important objectives. The 2-weighted-sum is
computed for each alternative according to the formula:
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2-weighted-sum =- wl*cl + w2c2 ,

where the indices are taken over the two most important objectives.

That is, the 2-weighted sum picks the alternative satisfying the top two objectives
best as the expected choice of user. (Note that if there are more than two candidates
for the top two objectives, the algorithm will select the two that are nearest to the
front of the objectives list; the rationale for such is that the user tends to read the
objectives from left to right or top to bottom. The alternative that does well early will
likely be selected by the user as the expected best choice.)

The result is

Alternativ Rating

Stop 5*3 + 6*4 = 39
Turn 5*4 + 6*2 = 32
No Change 5*2 + 6*6 = 46

No change has the highest 2-weighted-sum; hence, the algorithm will assume that it
is the user's expected choice.

It just so happens that the algorithm picks no change as the best choice. The explana-
tion is as follows:

EXPLANATION

Keep Station and Avoid Collision are 2 of the most important crite-
ria, and since the No Change alternative satisfies Keep Station
AND Avoid Collision best, No Change is the best choice.

Here, the explanation is deliberately brief, since the obvious best choice neods little
explanation.

Suppose the weighted sum contradicts the 2-weighted-sum (i.e., the user's
expectation). The explanation would be of the following form: (Assume that ai is the
actual-best choice, while aj is the expected-best choice.)

aj is better than ai in ck. But since ai is better than aj in c1 , Cm, Cn,
ai is the better choice.

In case of ties for top ratings, the explanation will state so, and list all the tied
alternatives.

Explanation for the Weighted-Sum Pair-Wise Method

The explanation facility of this Method is the same as that of the Weighted-
Sum Rank Method.
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Observations

S;mplicity " nd brevity are the chief objectives of the exp!nation facility. With
this in mind, we have digressed from the usual tendency to output exhaustive traces
of the procedural actions of the algorithm as explanation. Instead, we choose to make
a few reasonable assumptions (such as, we assume that the user has a priori expecta-
tion of the outcome based on some heuristic, and we further assume that the heuris-
tic used is the weighted-sum method discussed above) to prune the combinatorial
number of comparisons among alternatives.

Furthermore, details of the inferencing have been omitted in the explanation.
The reason is that the inference step is just a mathematical processing of the input,
and it is not possible to describe mathematics exactly using natural language. With
less than an exact description, the inference step would only confuse the user. Hence
it is omitted. To compensate for the omission of inferencing, we recourse to the use of
while lies to explain the outcome. White lies are approximations to explanations.
They are not meant to give an exact account of the outcome. Rather, they are more
human readable substitutes for the exact explanation.

The explanation facility has two shortcomings worth mentioning. First, the
min-max algorithm picks one and only one alternative. In case of ties, even when they
are identical, the algorithm will pick one arbitrarily. This action of the algorithm
may not always be desirable. Methods for dealing with ties have been developed
Yager (1981), but they have not been incorporated into the algorithm implemented
here.

Secondly, the facility does not include some alternatives in the explanation,
even though they are perfectly fine candidates. This drawback is a consequence of
trying to satisfy our objective of brevity. Just imagine what it would bt like if there
are many alternatives, and each is mentioned in the explanation.

THE EIGENVECTOR METHOD OF FINDING WEIGHTS

This section discusses Saaty's method of obtaining a ratio scale based on
paired comparisons of criteria. (See the discussion of the eigenvalue problem under
the Pair-Wise Objective Evaluation section.)

The maximum eigenvalue and its corresponding eigenvector can be found to
the desired accuracy by using an iterative computational process. However, we found
the use of the approximation discussed in the next section to be considerably faster
and sufficiently accurate for our purposes.

Approximation to the Maximum Eigenvalue and Normalized
Eigenvector

The following approximation is valid when the user-provided matrix B of
paired comparisons is reasonably consistent. The measure of inconsistency Saaty
(1977, 239) for an m by m matrix B is

inconsistency = [(xmax - m)/(2m - 2)]1/2 ,
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where xmax is the maximum eigenvalue of B. (A matrix is consistent only if

xmax = m.) Saaty indicates that the consistency is acceptable when (Gmax - m)/
(m - 1) is less than unity. Judging by examples shown later, we should keep this lat-
ter measure below about 0.2.

In slightly different notation, Saaty says that the solution "may be estimated
by normalizing each column of B and taking the average over the resulting rows. This
yields a vector W; in this case, one can readily obtain an estimate for xmax by com-
puting BW, dividing each of the components of the resulting vector by the corre-
sponding component of W, and averaging the results."

The vector W that results is the normalized eigenvector that Yager uses in his
1977 paper. The eigenvector is normalized by having its entries sum to unity. (Yager
incorrectly calls this a unit vector.) Going through Saaty's description step-by-step,
we have the following equations. The user's matrix of comparisons is

bli b12 ... blm
b21 b22 ... b2m

b ii bn 2 ... bmm,

Normalizing each column of B gives R, where

In

bij = bij/ biji=1

Taking the average over the resulting rows yields W, the vector of weights.

Wl
w2 In

W = ... ,where wi= (1/m) Z bij.
... j=l
win

Computing BW and dividing each of the components of the resulting vector by
the corresponding component of W gives

Yl
Y2 

In

Y = .. ,where Yi= ij - wj)/wi.
•... j=1
yIn

Averaging the results gives 1he estimate of the maximum eigenvalue.

In
max< X max> = 1m Yi

i=1
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Example 1:

1 1/3 1/2 1/6 1/5 1/9
B= 3 1 3 3/6 3/5 6/9

2 1/3 1 2/6 1/5 2/9

Wl wl = 43/270 = 0.15926
W = w2 w2 = 159/970 = 0.58889

w3 w3 = 68/270 = 0.25185

For convenience, let wi = wi'/270. Then wl' = 43, w2' = 159, w3' = 68.

Wl + w2/ 3 + w3/ 2

BW= 3w + w2 + 3w3
2wl + w2/ 3 + w3

1 + w2'/3w1' + w3'/2w1'
y = 3w1'/w2' + 1 + 3w3'/w2'

2wl'/w3' + w2'/3w3' + 1

kmax > = [3 + 43(1/53 + 1/34) + (159/3)(1/43 + 1/68) + 68(1/86 + 3/53)]/3

= 3.0539

Estimated Values: < xmax > = 3.05, W = (0.159, 0.589, 0.252)

True Values (Saaty, 1977, p. 266): ,max = 3.95, W = (0.16, 0.59, 0.25)

Example 2:

1 9 71 63/79 9/15 35/41
B= 1/9 1 1/5 - B= 7/79 1/15 1/41

1/7 5 1 9/79 5/15 5/41

w = (63/79 + 9/15 + 35/41)/3 = 0.7504
w2 = (7/79 + 1/15 + 1/41)/3 = 0.5989
w3 = (9/79 + 5/15 + 5/41)/3 = 0.1897

wl 9w2 7w3
BW = w/9 w2 w3/5

wi/7 5w2 w3

1 9w2/wl 7w3/wl
w 1/9w2 1 w3/5w2
w1/7w3 5w 2/w3 1

<Amax> = [3 + w1(1/9w2 + 1/7w3) + w2(9/w1 + 5/w3) + w3(7/wl + 1/5w2)1/3

= 3.219
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Estimated Values: < kmax > = 3.219, W = (0.750, 0.0599, 0.190)

True Values: Xmax = 3.2 10, W = (0.77, 0.05, 0.17)

Notes on the Eigenvector Method

Several pertinent excerpts concerning the eigenvector method are quoted or
commented on here.

Number of Criteria

(Saaty, 1977, p. 234): "... the hierarchy serves as a useful tool for decomposing
a large-scale problem, in order to make measurement possible despite the now-
classical observation that the mind is limited to 7 4- 2 factors for simultaneous com-
parison." (Saaty discusses hierarchies in sections 4-6 of his paper and references
Miller's paper entitled "The magical number seven plus or minus two: some limits on
our capacity for processing information.") Saaty (1977, p. 251): "In general, informed
judgment leads to better consistency. However, all the plots show that when the num-
ber of objects being compared exceeds 7 ± 2, the consistency can be expected to be
very poor - a theoretical confirmation of Miller's psychological observation. Later on
we show how to overcome this limitation on the number of objects by using a method
of hierarchical clustering."

Note that the number of paired comparisons for m criteria is m(m-1)/2.

m 2 3 4 5 6 7 8 9 10

No. pairs 1 3 6 10 15 21 28 36 45

Eigenvalue Existence

Saaty (1977, p. 235): "The Perron-Frobenius theory (Gantmacher, 1960)
ensures the existence of a largest real positive eigenvalue for matrices with positive
entries whose associated eigenvector is the vector of weights. This vector is normal-
ized by having its entries sum to unity. It is unique."

Consistency Case

Adapted from Barbeau (1986, p. 14): If the matrix is consistent, then the col-
umns are proportional to the normalized eigenvector (wl, ..., wm), and the rows are
proportional to (1/wi, ..., l/wm). Also, bij * bjk = bik for all i, j, k. (For m = 3, this
becomes bXy ° byZ = bXZ.)

METHODS FOR FINDING THE WORST INCONSISTENCIES

If the expert's matrix B shows substantial inconsistency, we would like to
direct his/her attention to entries thet most contribute to the high measure of incon-
sistency. The first method below detects the criterion whose ratings have the greatest
overall inconsistency. The second method tries to pinpoint the one change in pair
rating that will bring the matrix most closely to consistency. It suggests the replace-
ment value of that pairing. If that change is unacceptable to the expert, he/she would
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need to look at other pairs. If the inconsistency is evenly spread throughout the
matrix, these methods will no, help much.

The expert should initi illy be told that a rating of r means that a criterion is r
times more important than another. Saaty (! 9377, p. 246) describes a rating of 3 as
"Weak importance of one over another" and "Experience and judgment slightly favor
one activity over another.' Barbeau (1986, p. 17) explains 3 as "One moderately more
important than the other" and "Experience and judgment slightly favor one option
over the other." Consistency requires that the ratings be proportional to importance.
Yager applies the weights with that interpretation in his proposed systems. We
believe that the above descriptions of the rating 3 correlate poorly with "three times
more important."

Column Method

Given: Inconsistent matrix B of pair-wise comparisons
Vector W of weights (normalized eigenvector of B)

1. Normali'e the columns of B, giving matrix B ,

2. For each column (jth) of D, compute the squared distance

dJ)= (hlij -w1)2 + (b2j - w2)2 + ... + (@mj -Wm) 2

(If B is consistent, then hij = wi for all i and j.)

3. Reexamine the ratings for the criterion having the greatest value of do). In
particular, compare the two criteria having the two greatest values.

Note: The results will 0e exactly the same if rows (and inverse elements)
are used instead of columns.

Example 1:

1 4 1/4 1/3 kmax = 5.38

13 1/4 1 1/2 3 inconsistency = 0.484 2 1 3
3 1/3 1/3 1 W = (0.21, 0.19, 0.41, 0.18)

col. 1: d(1) = 0.073
col. 2: d(2) = 0.152 "- worst
col. 3: d(3) = 0.016
col. 4: d(4) = 0.077 -- next worst

The results suggest we should look at our ratings for pairings with the second crite-
rion, especial!y with the fourth and first criteria.
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Example 2:

1 1/5 1/6 1/4 kmax 4.34
B = 5 1 2 4 inconsistency = 0.246 1/2 1 6

4 1/4 1/6 1 W = (0.06, 0.45, 0.38, 0.12)

Col. 1: !d(1) = 0. 036
col. 2: d(2) = 0.021
col. 3: d(3) = 0.034
col. 4: d(4) = 0.035

We conclude that the inconsistency is distributed somewhat evenly throughout the

ratings.

Example 3:

1 5 3 11 Xmax = 4.225
B = 1/5 1 1/7 1/7 inconsistency = 0.1941/3 7 1 1/3

1 7 3 1 W = (0.37117, 0.04878, 0.18565, 0.39440)

col. 1: d(l) = 0.00439
col. 2: d(2) = 0.0.04367-worst
col. 3: 0() = 0.034
col. 4: d(4) = 0.035

Column 2 is much more inconsistent than the other three, which are about the same.
Matings for criterion 2 should be reexamined.

Triple Method

Recall that a matrix is consistent if bi * bjk = bik for all i, j , k. For an
rn-by-rn matrix, the number of equalities to check can be reduced to m!/3!(m-3)!

=rn(m-1)(m-2)/6.

In 3 45 678 9

No. pairs 1 4 10 20 35 56 84

The ones for m = 4 are illustrated below.

bl- Q2Y1Y b1 b14 b12 -b23 = b13
(ijk = 123)

b21 b22 ]b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

bl b1 2 b13 b4 b12 * b24 = b14
(ijk = 124)

b21 b22 b23 b4

b31 b32 b33 b34

b4l b42 b43 b44
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bll b12 1Ib 131Lb14 b13 -b34 = b14
(ijk = 134)

b21 b22 b23 b2

b31 b32 b33

b4 b42 b43 b44

bll b12 b13 b14 b23 *b34 = b24
(ijk = 234)

b21 b20 2 3 b9

b31 b32 b33 b4

b4l b42 b43 b44

One possible method of finding a single, large inconsistency is to take each of these
triples and form the measure mijk = bij*bjk/bik. If the value is less than unity, let
mijk be the inverse of this quantity. Examine the triple having the greatest value of
mijk to see if equality can be reached or approached without badly affecting overlap-
ping triples. If the two triples having the two greatest values of mijk overlap, this
likely would pinpoint the worst inconsistency.

For examples, we use the same 4-by-4 matrices as in the column method.

Example 1:

1 LI4 1/4 '__

4 2 1 3

3 1/3 1/3 1

The resulting measures are

m123 = 8

m124 = 36

m134 = 2.25

m234 = 2

The worst case (ijk = 124) involves b 2 , b24, and b14 , while the next worst (ijk
123) involves b 12, b23, and b13 . Since these have b12 in common, we should look at
the rating for the pair (criterion 1, criterion 2). In particular, we can algorithmically
find the value that minimizes m123 + m124 and recommend that change. First, the
algorithm finds that b12 = 1/2 satisfies one equality, and b12 = 1/9 satisfies the
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other. It computes m123 + m124 for values of b12 between 1/9 and 1/2. Some partial
results are

b12 m123 m124 m123+m124

1/6 3.0 1.5 4.5
1/5 2.5 1.8 4.3
1/4 2.0 2.25 4.25 " Recommend b12 = 14
1/3 1.5 3.0 4.5

Note that the worst entry, b 12, is in the worst column identified by the first method.

Example 2:

1 1/5 1/6 1/4

5 1 2
B= 6 1/2 1 F61

4 1/4 1/6 1

m123 = 2.4

m124 = 3.2

m134 = 4.0

m234 = 3.0

The measure m234 is almost as large as m124 and m134, so we will look at the three
triples having the greatest value. The two worst, triple-134 and triple-124, have b 14
in common. (Columns I and 4 were the worst, although only slightly, based on the
column method.) Triple-134 and triple-234 have b34 in common. Triple-124 and
triple-234 have b24 in common. These three are all in the fourth column, which sug-
gests that all ratings for criterion 4 should be reconsidered.

Example 3:

1x
1/3~ L-%Li

1/5 1l/71 1 1/7 1
1/3 7 1 "& 1*/31

1 7 3 1

m123 = 4.2
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m124 = 1.4

m134 = 1

m234 = 3

Triple-123 and triple-234 have b23 in common. Triple-123 is satisfied by b2 3 = 3/5,
and triple-234 by b23 = 3/7. The only rating value between 3/5 and 3/7 is 1/2.

b2 3  m123 m234

1/2 1.2 1.1667 Recommend b2 3 = 1/2

This method identified b23 as being the most inconsistent element, while the column
method identified column 2.

Based on these examples, the triple method seems preferable to the column
method because it appears to give better results. Also, it does not require computing
the weighting vector.

COMPARISON TO DEMPSTER'S RULE

Dempster's Rule

Dempster's rule of combination (Dempster, 1967) applies only to the combin-
ing of independent evidence. In this particular application, the m bodies of evidence
correspond to the m criteria used to select an alternative, and the criteria must be
reasonably independent. Dempster's rule is a generalization of Bayesian inference.
Shafer (1976) later formulated Dempster's scheme within a flexible representation
framework; thus, the popular label Dempster-Shafer Theory.

The use of Dempster's rule leads to upper and lower probabilities for each of n
propositions. (In our application, these n propositions are our alternatives, al, a2,
an.) This set of propositions must be mutually exclusive and exhaustive. While
Bayesian methods deal only with these n original propositions, Dempster's method
can involve up to 2n - 1 general propositions. These are found by taking all possible
disjunctions of the original n propositions. The most commonly used general proposi-
tion is the disjunction of all n propositions,

= alva2v...van,

where "v" denotes the Boolean OR. For n = 3, for example, the general propositions
are
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bl = al = - (a2 v a3)
b2 = a2 = - (al v a3)
b3 = a3 = -(alv a2)
b4 = alva 2 =-a3
b5 = al v a3 =-a2
b6 = a2va3 = -al
b7 = alva2va3=

where the tilde "' denotes NOT.

An expert interprets each body of evidence, say the jth, to provide a probability
mass assignment Mi over the propositions. (Probability mass is simply probability.
Shafer introduced tle term mass because it is descriptively useful.) In the Bayesian
case, there would be n probabilities summing to unity, and these would be equal in
the face of total ignorance. In the generalized case, probabilities are assigned to any
subset of the set of general propositions, also summing to unity. All of the probability
mass is assigned to in the case of total ignorance.

Here we will show only the formula for the combining of two simple assign-
ments. Formulas for a variety of cases are given in Dillard (1982a,b) and Dillard
(1983a). An algorithm for computing the general case is in Dillard (1983a,b). In the
simple formula below, the two probability mass assignments are Bayesian except for
mass assigned to 4. This type of distribution arises in a number of applications, as
described in Garvey (1981) and Dillard (1982a,b). Based on two bodies of evidence
concerning the propositions, values are assigned to M (al), M l(a2), ... , M1 (an), M1 ()
and to M2(al), M2(a2), ..., M2(an), M2(). The combined distribution M is given by
the following formulas.

M(ai) = {M1(ai)*M2(ai) + Ml(ai)*M2(1) + Ml(0)*M2(ai)} /C

= F(ai) / C ,

where F(ai) represents the expression in braces and

n
C = MI(4)*M2(4) + Z F(a)

i=1

The resulting uncertainty is

n
M() = M1 ()*M 2()/C = 1- M(ai).

i=1

The upper and lower probabilities of each ai can be found for a combined dis-
tribution. The lower probability is called the support for the proposition, and the
upper probability is called the plausibility of the proposition. In the case above, the
support is s(ai) = M(ai), and the plausibility is p(ai) = 1 - s(- ai) = M(ai) + M(),
where the support s of a proposition b is defined as follows:
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s)= ZMW)
b'&b=b'

For example, s(al v a4) = M(ai) + M(a4) + M(al v a4). A decision measure proposed
in Dillard (1982a) is s(ai) - s(-ai) = M(ai) + p(ai) - 1, that ranges from -1 to 1.

For all applications of Dempster's rule, the combining can take place Pair-
Wig,, . r .i1-uibnen, lv and in Any ordAr; for exampl . (MI C M2) 0 M 3
= NM2 C M 3) © M1 = (MI © M2 © M3). If any assignment is Bayesian, the com-
bined probability mass distribution will also be Bayesian. When all assignments are
Bayesian, the combining operations reduce to standard Bayesian operations.

Examples of Dempster's Rule

Example 1. Suppose we have two alternatives, al and a2, and two criteria (i.e.,
n = 2 and m = 2). Our two probability mass assignments are

Criterion 1: Mi(ai) =0.1, Mj(a2) = 0.4, MI(O) = 0.5

Criterion 2: M2(al) = 0.4, M2(a2) = 0.2, M2() = 0.4

The application of Dempster's rule is as shown below.

0.1 0.4 0.5
r r
I I I

,0 I al I a2 I 4 10.4I I I
I II

a2 II a2 a2 0.2

a I al al 0.4

i V ~alllllllll

81 a2 .

The cross-hatched area is 0.190.2 + 0.4*0.4 = 0.18, resulting in denominator
C = 0.82. The resulting probability masses are then as follows:

M(aj) = (0.1.0.4 + 0.1.0.4 + 0.5-0.4) / 0.82 = 0.34146

M(a2) = (0.4*0.2 + 0.4°0.4 + 0.5-0.2) / 0.82 = 0.41463

M() = 0.5*0.4 / 0.82 = 0.24390
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Example 2. We have three alternatives, al, a2, and a3, and two criteria. Our

two probability mass assignments are

Criterion 1: M1(a,) = 0.3, M1(a2) = 0.2, M1(a3) = 0.1, M1(4) = 0.4

Criterion 2: M 2(-a2) = 0.4, M 2(4) = 0.6

03 0.2 0.1 0.4

I0 al Ia2 a3 1 0.6

I i i II

-a2 al 2a3 al 0.4
I I I
Ia aI i//// I I

al a2 a3 4

The cross-hatched area is 0.2.0.4 = 0.8, resulting in denominator C = 0.92. The re-

sulting probability masses are then as follows.

M(ai) = 0.3 (0.4+0.6) / 0.92 = 0.32609

M(a 2) =0.2-0.6 / 0.92 = 0.13043

M(a 3) = 0.1 (0.4 +0.6) / 0.92 = 0.10870

M(-a2) = M(al v a3) = 0.4°0.4 / 0.92 = 0.17391

M(4) 0.4*0.6 / 0.92 = 0.26087

Because a disjunction other than ( receives mass, we need to compute the support
and plausibility (i.e., the lower and upper bounds) for the probabilities of the basic
alternatives.

Decision Measure
ai (s(ai), p(a i) = l-s(-ai)) s(a ) - s(- ai)

al (0.32609, 0.76087) 0.08696-Select al
a2 (0.13043, 0.39130) -0.47826
a3 (0.10870, 0.54348) -0.34783

Problem Domain Differences

We are using Dempster's rule in a way probably never envisioned by
Dempster. Not only are we imposing a weighting procedure on the probability mass
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assignments (but only when the assignments do not reflect criteria importance), we
are applying his rule to a different kind of decision problem. Dempster intended his
algorithm to be used to decide which of n mutually exclusive -3nd exhaustive hypothe-
ses is true. We are deciding which of n alternatives is best. Our alternatives are
mutually exclusive mainly in that we will select just one. (In practice, the altei L--
tives may be courses of action that have elements in common.)

Interpretation of the output probability mass distribution is also different for
the two tinds ot applications. For example, if plan a5 is shown to be somewhat better
than all other candidate plans, we choose a5 without qualms. However, we have to be
careful how we react to a decision that a contact is most likely a merchant ship and a
little less likely to be a hostile cruiser.

Because of the difference between deciding which hypothesis is true and decid-
iny which alternative to select, the assignment of probability to disjunctions has a
somewhat different interpretation. These are examples of disjunctions when deciding
which hypothesis is true:

Ship Classification Examples: (1) If the contact emits a signal peculiar to some
radar system, we can assign probability to the disjunction of ship classes carrying
that radar. (2) If a contact is maneuvering, we can assign probability to NOT-
merchant, which is the disjunction of all other ship types. We let other kinds of evi-
dence distribute that probability mass among all types but merchant.

Plan Selection Examples: (1) The Stop/Turn/No Change decision problem dis-
cussed earlier is a simple example of plan selection. (2) See the mission planning
examples under the section "Applications of the Fuzzy Logic Decision Support Tool"
below.

We should also note that many decision problems do not involve mutually
exclusive hypotheses. For example, the Mycin system (Shortliffe, 1967) was designed
to diagnose and select therapy for certain infectious diseases. The hypotheses are not
exclusive, since the patient could have more than one infection. Shortliffe's confi-
dence factors apply to decisions between two hypotheses (as opposed to the multi-
alternative problem) so are well-suited to that type of application.

Dempster's Rule Applied to Weighted Assignments

Normally, the importance of the criteria should be considered when generat-
ing the probability mass assignments, and weighting is not needed. The weighting
process is needed when the assignments are derived in the manner used in fuzzy deci-
sion aids. We are introducing the weighted application in order to compare perform-
ance with fuzzy decision aids.

Weighting every probability mass of an assignment Mj by wj will accomplish
nothing, since, when applying Dempster's rule, every product of probability masses
would be weighted by the product wlw2-...*Wm, and the resulting distribution
would be no different from the unweighted version. However, we can accomplish
weighting by applying the weight wj to every probability mass and then adding 1 - wj
to wj oM(). The adjusted distribution Mj for the jth criterion is then Mj'(b) =

wj.Mj(b) for b 0 o, and Mj'(i) = wj.Mj(N) + 1 - wj.

42



We use Example 1 above with weights wi = 0.5 and w2 = 0.5 to see if we get the
same results as for the unweighted case. (Recall that the fuzzy set methods use
weights normalized to sum to unity.) The adjusted assignments are

Criterion 1: Ml'(al) = 0.05, Ml'(a2) = 0.2, MI'(O) = 0.75

Criterion 2: M2'(al) = 0.2, M2'(a2) = 0.1, M 2'(O) = 0.7

LAz VA*IULAAGC ki JJUQU.*AOY 4 UA at O.: .A ..

M'(ai) = 0.20419, M'(a2)=0.24607, M'(O) = 0.54974.

Note that o rece.'es considerably more mass than for the unweighted case. The solu-
tion is to normalize the weights so that the maximum is unity.

wj' = wj/wmax, where wmax = max[wj].

When the weights are all equal (i.e., wj = 1/m for all j), the process reduces to the
usual use of Dempster's rule.

We use the same example of mass assignments for two weighted cases.

Weighted Case 1: wl = 0.2, w2 = 0.8

Weighted Case 2: wl = 0.8, W2 = 0.2

We expec' ,hat in case 1, alternative al will receive considerably more prob-
ability mass than a2; that is, we expect that M(al) > M(a2). In case 2, we expect that
M(a2) > M(al). First we find the adjusted probability mass assignments.

Weighted Case 1 (wl' = 0.25, w2' = 1):

Criterion 1: Ml'(al) = 0.025, Ml'(a2) = 0.1, M'() = 0.875

Criterion 2: M2'(al) = 0.4, M2'(a2) = 0.2, M2'(-O) = 0.4

Weighted Case 2 (wl' = 1, w2' = 0.25):

Criterion 1: Ml'(al) = 0.1, Ml'(a2) = 0.4, M1'(,) = 0.5

Criterion 2: M2'(al) = 0.1, M2'(a2) = 0.05, M2 '(-O) = 0.85

Applying Dempster's rule to the adjusted mass assignments gives the following com-
bined probability mass distribution:

Weighted Case 1: M'(al) = 0.38743, M'(a2) = 0.24607, M'(¢) = 0.36649

Weighted Case 2: M'(al) = 0.15183, M'(a2) = 0.40314, M'(,) = 0.44503

As we expected, for case 1 we have M(a 1) > M(a2), and for case 2 we have M(a2)
> M(ai).

Before discussing the conversion of fuzzy measures into probability masses
(for comparing the performance of Dempster's rule with fuzzy decision methods), we
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summarize the adjusting of the probability mass distributions. Note that if mass is
not given to o or any other disjunction for the highest-weight case, the result will be
a Bayesian probability distribution.

Weighting Assignments for Use in Dempster's Rule - A Summary

Given: e Alternatives al, a2, ..., an
e m criteria and, for each (the ith)

-mass assignment Mj (independent of criterion importance)

-weight wj (reflecting criterion importance)

Normalize the weights:

wj' = wj/wmax, where wmax = max {wj}

Adjust the probability mass assignments:

Mj'(b) = Wj'°Mj(b), allb =

Mj'(46) = wj'e Mj(4) + 1 - wj

Appiy Dcnrpster's rule to the weighted assignments:

M' = Mi'©M2'©M3'© ... © Mm'.

Conversion of Fuzzy Subsets into Mass Assignments

To convert the fuzzy set = (cj(al), ..., cj(an)) into a probability mass assign-
ment Mj (for use in Dempster's rule), we first estimate Mj(41). (For a Bayesian distri-
bution, Mj (0) = 0.) How to best convert Cj into an equivalent probability mass
assignment is a research issue. For now we do the following. We assign the remaining
amount, 1 - Mj (40) to the alternatives in proportion to the corresponding cj values,
that is,

Mj(ai) = (1 - Mj(0)) * cj(ai) / cj(ai).
i

Alternatively, we can exploit the flexibility of Dempster's rule by assigning
probability to any disjunction of alternatives. For example, we may feel that one
alternative a2 is definitely poorer (judging for criterion j) than the other alternatives,
but we do not wish to say the others are equally good compared to each other. In this
case, we can assign Mj(-a2) = c instead of assigning M(a1) = M(a3) = M(a4) ...
= M(an) - c / (n-i) and M(a2) = d < < c.

In the communications system example that follows, we exercise this flexibil-
ity for one criterion. The resulting probability mass distribution is fairly equivalent
to the measures for a fuzzy algorithm.
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Examples of Conversion

We must choose among four communications systems for a certain mission
(i.e., alternative al is sysi, a2 is sYs2, a3 is sys3, and a4 is sys4). Our three criteria
are communications range, ease of use, and reliability. We have previously computed
the weighting vector W = (wl, w2, w3, w4).

Criterion 1: Communications Range

Assume that . 1i meet the minimum requirements. The fuzzy membership
value is chosen to be the percentage of time that high-quality communications are
maintained without having to move closer. If not already known, these percentages
can be computed based on a number of known parameters and distribution functions.
Fuzzy set C1 indicates how well each of the systems satisfies this range criterion.

C1 = (cI(sYs1), ... , cl(sys4)) = (0.55, 0.60, 0.50, 0.85)

In specifying a criterion's probability mass assignment for use in Dempster's
rule, we can express our uncertainty about our accuracy by assigning some of the
probability to the disjunction .0 of all alternatives. In this example, 40 = sysl v sys2
v sys3 v sys4. Since we have very good information about range performance, our un-
certainty here is about M(-0) = 0.1. We convert the measures in C1 to a probability
mass distribution by proportionally dividing the remaining 0.9 probability among the
four alternatives, that is, let M1 (ai) = 0.9(cl(ai) / 2 cl (ai)). We then have M(4,)

= 0.1, Ml(sysl) = 0.198, Ml(sys2) = 0.216, M1(sys3) = 0.18, and MI(sys4) = 0.306.

In practice, the expert is unlikely to assign such precise numbers, but we wish
to illustrate how to make them equivalent to the fuzzy measures for the sake of com-
parison.

Criterinn 2. Eas, of Use

This is a subjective judgment. Assume that sysl and sys4 are older and some-
what clumsy compared to sys2 and sys3. Fuzzy set C2 indicates how well each com-
munications set meets the ease-of-use criterion.

C2 = (c2(sysl), ..., c2(sys4)) = (0.40, 0.90, 0.90, 0.40).

In specifying the probability mass distribution for criterion 2, we first set the
value of M2 (4). Suppose we feel that our uncertainty on the matter rates a value of
about 0.3. If we use the same conversion method as before, we have the following dis-
tribution.

M24) = 0.3, M2(sysl) = 0.1077, M2(sys2) = 0.242,

M2(sys3) = 0.242, M2(sys4) = 0.1077

Criterion 3: Reliability

Assume that the older communication systems, sysl and sys4, have proven to
be highly reliable in the past, but, because of their age, we cannot expect this to con-
tinue. Our brief experience with sys2 indicates that it is probably highly reliable.
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Although we cannot be sure of this, our doubt is offset by the fact that the compo-
nents will not fail from age. Several users have reported failure of one of the
components of their new sys3's, so we are somewhat concerned about its reliability.

Arbitrarily, we decide a 10-percent failure rate is intolerable, and we let

c2(sysi) = 1 - 10eprob(system i fails during mission).

Fuzzy sct C3 regarding reliability is

C2 = (c2(sysl), ..., c2(sys4)) = (0.95, 0.95, 0.60, 0.95).

We convert these measures into probability masses, specifying M 3() = 0.4.
We then have M3(sysl) = M3(sys2) = M3(sys4) = 0.1652, and M3(sys3) = 0.10435.

At this pcint, the user of Dempster's rule, based on his knowledge (or lack of
knowledge) of reliability figures, may feel more comfortable making the following
assignment.

M3() = 0.6, M3(- sys3) = 0 4

This is fairly consistent with the distribution obtained by conversion. Note that
sys3 - sys v sys2 v sys4, and thqt M3(sysl) + M3(sys2) + M3(svs4) - M3 (sys2)

- 0.391.

Experimental Comparisons

The Yager (1977) weighted min-max method was compared with the weighted
version of Dempster's rule for several examples. The fuzzy subsets used in the min-
max method were converted into mass assignments in the manner described above.
The results were as expected for the cases considered. The two methods generally
resulted in the same decision. When the two methods gave different results, the rea-
son was that the decision alternative having the maximum value of its minimum
measure had low values of its other measures, relative to the measures for the other
alternatives.

We cannot conclude that on3 method is better than the other, especially with
so few data points. The choice of which method is better is a matter of philosophical
preference and of practicality. The method based on Dempster's rule has the advan-
tage that all input data are fully exploited. It is also more flexible in that probability
assignments can be given to disjunctions of alternatives. The fuzzy method has a con-
siderable advantage in simplicity.

APPLICATIONS OF THE FUZZY LOGIC DECISION
SUPPORT TOOL

During the past several years, fuzzy 1>gic has found numerous applications in
fields ranging from finance to earthquake engineering. The most important and strik-
ing application has been the realm of fuzzy-logic-based process control. Among the
well-publicized applications are automatic train operation, vehicle control, robot

46



control, speech recognition, universal controllers, and stabilization control. Maiers
and Sherif (1985) have published a survey of applications of fuzzy logic.

Of interest here is the application of fuzzy logic to command and control. In
general the problem can be posed as the generation, evaluation, and/or selection of
the good plans or courses of action given a situation and the rules of engagement. As
in our running example, given the situation of a submarine trailing activity, three
courses of action were considered (stop, turn, no change) for a given set of objectives
(avoid collision, avoid detection, keep contact, and keep station).

Prototype applications of the fuzzy logic decision tool to problems in mission
planning for air strikes are described here. For further information, see Larsen
(1989).

A PLAN SELECTION AID FOR THEATER STRIKE MISSION
PLANNING

The overriding joint-service need in C3 is rapid, reliable, and effective
exchange of timely information for planning, decisions, and command action. Project
Juniper addresses the technology of distributed expert decision aids in the context of
cooperative and supportive joint Navy/Air Force air strike mission planning. Air
strike mission planning is currently a time-consuming and worker-intensive process.
To respond to rapidly changing battle environments, the time to accomplish all levels
of mission planning must be significantly reduced. An increasingly lethal threat envi-
ronment requires that planning effectiveness must also be improved.

The Navy and Air Force have developed expert systems, the Air Strike Plan-
ning Advisor (ASPA) and the Knowledge-based Replanning System (KRS),
respectively, that support the planning of strikes against land targets. These develop-
ments use different hardware and software, but they have been networked to demon-
strate the feasibility of distributed planning for joint Navy/Air Force air strike mis-
sions. That is, the system users work together, sharing data and results, to plan a
joint mission.

KRS is a prototype decision aid aimed at exploring the issues involved in auto-
mated and semi-automated mission planning. KRS deals primarily with the allocation
and scheduling of resources for strike missions and the associated support missions
such as air escort, surface-to-air missile suppression, electronic countermeasures, and
refueling. In addition, KRS includes Tomahawk Land Attack Missile (TLAM) mis-
sions. KRS can be used interactively by the user for database query, plan verification,
or plan generation at the theater level. A Navy version and an Air Force version of
KRS work together to plan joint missions in various theaters of operation. When
standard plan knowledge cannot be used at the theater level, the Navy KRS can task
ASPA to automatically develop subplans tailored to new targets, a changing threat
environment, or changing weather conditions.

The top-level interface of the Juniper system allows the user to generate and
send joint tasking directives or target lists to the respective Navy and Air Force plan-
ning systems. When strike plans are developed by the individual services, they are
then integrated at the top level by a process of machine-assisted review and compari-
son using a prototype version of the fuzzy logic decision tool, referred to as the Plan
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Selection Aid (PSA). The purpose of PSA is to provide a decision aid to help a user
choose between proposed candidate missions. The techniques of multiple-alternative,
multiple-criteria decision making, based on fuzzy set theory, are employed to suggest
the most desirable candidate mission, given previously defined and weighted criteria.
The user may select his/her own plan evaluation criteria and their relative impor-
tance. The joint plan is determined by the best combination of Navy/Air Force assets
needed to accomplish the primary and support missions, considering primary mission
parameters such as (1) availability of assets like aircraft, weapons, and fuel; (2) num-
ber of assets required, including refueling and other support assets; (3) mission
duration and time over target; and (4) likelihood of mission success. A succinct expla-
nation of the reasoning behind this suggestion is provided to the user.

The PSA system used the weighted-sum utility function with the rank order
objective evaluation method. PSA is directly integrated into the Juniper system on a
Symbolics 3600 in ZetaLISP. The PSA display uses windows, menus, multiple fonts,
and icons as well as the natural language explanations. The decision aid is broken
into three steps to allow the operator maximum flexibility and feedback. Plan infor-
mation is carried from step to step and is always available for operator reference.

When the operator reaches the point in the Juniper system where candidate
mission plans have been developed, he/she may choose to enter PSA Figure 1 shows
an example summarizing various candidate missions that have been planned against
the petroleum, oil, and lubrication (POL) facilities at Tripoli.

Upon entering PSA, the user selects which plans or plan components to com-
pare and which template, if any, to use. In this example, the user has chosen to com-
pare strike plan components for a Navy and Air Force mission and has chosen the
preemptive strike template (see figure 2). A template is a predefined set of weighted
criteria that may be used or altered by the user. For a preemptive strike, survivabil-
ity has a very high rating while sustainability has a very low rating.

The weighted selection criteria are then displayed with the operator given the
opportunity to modify the weights (see figure 3). The candidate plans are then given a
score with respect to each criteria. This internal evaluation is done by a rule and
heuristic-based approach. The following is an example of a rule:

If night or poor visibility,
then

increase survivability of F-111 by 2,
increase survivability of A-6 by 1,
decrease survivability of othei TACAIR

by 3 if low threat or
by 6 if high threat.

Once the weighted criteria and the plan evaluations are obtained, PSA per-
forms the mathematics that culminates in a proposed candidate plan. The recom-
mended plan is then presented to the operator along with a brief explanation (see fig-
ure 4). The operator is asked to choose between the candidate plans. Once a plan has
been selected, it is added to the Joint Plan Summary in Juniper, and the losing candi-
date's resources are deallocated. The operator can return to PSA's top level to exam-
ine another plan coraponent, or the operator can return to Juniper.
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PLAN GENERATOR AND EVALUATOR FOR THE AIR STRIKE
PLANNING ADVISOR

The Air Strike Planning Advisor (ASPA) functionality currently includes
weaponeering and defense suppression planning. The weaponeering module integrates
existing stand-alone decision aids, large data files and expert knowledge to support
the selection of aircraft, weapons loads, load configuration, and delivery tactics to
achieve desired strike mission effectiveness. The defense suppression module is
designed to support a strike leader in the selection of resources and tactics to sup-
press the local area defensive threat in support of a land air strike. The defensive
threat includes early warning radars, surface-to-air missiles, anti-aircraft artillery,
and air intercept. The resources and tactics to be considered include the electronic
countermeasures, decoys, antiradiation missiles, and deception employed by Naval
aircraft.

A prototype fuzzy logic decision tool has been incorporated into the defense
suppression planner to both generate and evaluate plans. Existing computer aids that
evaluate the effectiveness of a defense suppression plan would employ a Monte Carlo
model that simulates a given scenario and produces a probability of survival for the
aircraft. Such calculations are obviously unappealing to the strike group and may not
evea be meaningful because of all the assumptions involved and the vagaries of ran-
dom number generators.

The prototype fuzzy logic decision tool in ASPA gives the strike leader a
means of subjectively assessing a plan or a set of alternative plans according to the
leader's criteria. These criteria may involve measures of performance such as those
listed in table 3. In addition, a plan may be evaluated using criteria such as the ex-
pected number of valid missile firings rather than the probability of survival. It is
then up to the strike group to determine the risk involved based on their experience.

Figure 5 is a conceptual design for a deception plan generator. The entries in a
multidimensional matrix are rule sets that generate a score for each deception hard-
ware capability, each tactic, and each evaluation criterion. There is a set of rule sets
for each possible situaticn. This is depicted by the multiple levels or planes of rule
sets in figure 5.

After the user inputs a description of a given situation, the appropriate rule
set is used to score each hardware/tactic option for each selection criterion. The
scores are then weighted according to the importance of the selection criteria, and a
plan is recommended.
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Table 3. ASPA defense suppression: plan evaluation criteria.

Fuzzy Set Logic Methodology

* Subjective ranking of criteria
* Objective measurements of criteria

RrrERIA MEAMENI

EA-68 Optimal positioning with respect to EW & GCI
Missile systems Probability of kill (Pk) or safety factor
Chaff/flares % of area covered
DECM # of missile systems in threat environment
Fuel Amount used
ACFT % of available aircraft used
ARMs % of missiles on CV used

Output: Ordered ranking of plans
Summary explanation

I WEATHER

J ROLL-BACK OBJECTIVE

J SUSTAINED STRIKE

l TERRAIN

SOPHISTICATION OF ENEMY OPERATORS

ENEMY AIR CAPABILITIES

OFF-AXIS JAMMING # II

ON-AXIS JAMMING rule set

CHAFF CORRIDOR I
CHAFF CURTAIN cc<, rule set

ESM WITH 0
DETECTION _" I

ESM W/OUT
DETECTION _ rule set
DECOYS
(COVERT USE)
DECOYS
(OVERT USE) __TACTICS

,,, ,,L a.. 0,,
u w u L < Z (fU- Lu L 0 Z
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Figure 5. Deception plan generator.
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The following examples were generated on a VAX computer using the fuzzy
logic decision tool described in this report. These examples have been generated to
coincide with examples in the text. The user-supplied inputs are shown in bold type.

The program that generated the examples is documented in appendices B
and C. A source-code listing for this program is not included because of its length. A
copy of the complete program can be made available upon request to the authors. The
most useful components of the fuzzy logic decision tool are contained in appendices D
and E. These listings are stand-alone source code for che Min-Max Pair-Wise Method
and the Min-Max Rank Method, respectively. These short versions of the fuzzy logic
algorithms do not include the weighted-sum method nor the explanation facility.

All code has been written in FranzLISP, which runs in a UNIX environment.
Versions are also available in CommonLISP and InterLISP.

Script started on Wed Nov 30 13:19:10 1988
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% lisp
Franz Lisp, Opus 38.92
-> (load 'fuzzy.l)
[load fuzzy.l]

* FUZZY LOGIC DECISION-MAKING TOOL *

1: Min-Max Rank Method
2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Description of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit

Which do you prefer ?
Enter 1, 2, 3, 4, 5, 6, 7, 8, or 9---> 1

* FUZZY LOGIC DECISION-MAKING TOOL *

A program based on R.Yager's 1981 paper:
"A New Methodology for Ordinal Multi-objective

Decisions Based on Fu!zzy Sets"

ENTER NUMBER OF ALTERNATIVES: 3

ENTER LABEL FOR ALTERNATIVE 1: Stop
ENTER LABEL FOR ALTERNATIVE 2: Turn
ENTER LABEL FOR ALTERNATIVE 3: No Change

ENTER NUMBER OF CRITERIONS: 4

ENTER LABEL FOR CRITERION 1: Avoid Collision
ENTER LABEL FOR CRITERION 2: Avoid Detection
ENTER LABEL FOR CRITERION 3: Keep Contact
ENTER LABEL FOR CRITERION 4: Keep Station
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I PREFERENCE MEASURES: I
1 0. lowest or none
I 1. very low
1 2. low
1 3. medium
1 4. high
1 5. very high
1 6. perfect or absolute

For Avoid Collision, enter rating for Stop (0 - 6): 3
For Avoid Collision, enter rating for Turn (0 - 6): 4
For Avoid Collision, enter rating for No Change (0 - 6): 2
For Avoid Detection, enter rating for Stop (0 - 6): 3
For Avoid Detection, enter rating for Turn (0 - 6): 2
For Avoid Detection, enter rating for No Change (0 - 6): 5
For Keep Contact, enter rating for Stop (0 - 6): 1
For Keep Contact, enter rating for Turn (0 - 6): 0

For Keep Contact, enter rating for No Change (C - 6)1: 4
For Keep Station, enter rating for Stop (0 - 6): 4
For Keep Station, enter rating for Turn (0 - 6): 2
For Keep Station, enter rating for No Change (0 - 6): 6

Enter rating for Avoid Collision (0 - 6): 5
Enter rating for Avoid Detection (0 - 6): 1
Enter rating for Keep Contact (0 - 6): 3
Enter rating for Keep Station (0 - 6): 6

Our decision based on this model is Stop.

To see Explanation for the decision, enter E,
To see your Input, enter I,
To see Menu again, enter M,
To Quit, enter Q,

Input E, I, M or Q ---- > E

EXPLANATION
The No Ctange alternative is a better choice than Stop in satisfying the Avoid
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Detection, Keep Contact and Keep Station criteria. But, since Stop satisfies the
Avoid Collision criterion more closely than No Change, Stop is the better choice.

The Turn alternative is rejected partially because of a low rating in the Keep Station
criterion. The No Change alternative is rejected partially because of a low rating in
the Avoid Collision criterion.

Input E, I, M or Q ---- > I

Avoid Collision Avoid Detection Keep Contact Keep Station

Stop 3 3 1 4
Turn 4 2 0 2
No Change 2 5 4 6

RATINGS FOR CRITERIA:
5 1 3 6

input E, I, M or Q ---- > N1

Do you wish to use the Weighted-Sum Rank Method
with the input from the Min-Max Rank Method ?
1. Yes
2. No
Please enter I or 2 ---> 1

Avoid Collisicn Avoid Detection Keep Contact Keep Station

Stop 3 1 4
Turn 4 2 0 2
No Change 2 5 4 6
.............................................................................................

RATINGS FOR CRITERIA:
5 1 3 6

EXPLANATION
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Keep Station and Avoid Collision are 2 of the most important criteria, and since the
No Change alternative satisfies Keep Station AND Avoid Collision best, No Change
is the best choice.

Input E, I, M, or Q ---- > M

* FUZZY LOGIC DECISION-MAKING TOOL *

1: Min-Max Rank Method
2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Description of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit

Which do you prefer ?
Enter 1, 2, 3, 4, 5, 6, 7, 8, or 9 ---> 2

* FUZZY LOGIC DECISION-MAKING TOOL *

A program based on R.Yager's 1977 paper:

"Multiple Object Decision-Making Using Fuzzy Sets"

ENTER NUMBER OF ALTERNATIVES: 3

ENTER LABEL FOR ALTERNATIVE 1: Stop
ENTER LABEL FOR ALTERNATIVE 2: Turn
ENTER LABEL FOR ALTERNATIVE 3: No Change

ENTER NUMBER OF CRITERIONS: 4

ENTER LABEL FOR CRITERION 1: Avoid Collision
ENTER LABEL FOR CRITERION 2: Avoid Detection
ENTER LABEL FOR CRITERION 3: Keep Contact
ENTER LABEL FOR CRITERION 4: Keep Station

RATING THE ALTERNATIVES:
Enter a value between 0 and 10; where a higher value indicates a better rating.
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For Avoid Collision, enter rating for Stop: 5
For Avoid Collision, enter rating for Turn: 7
For Avoid Collision, enter rating for No Change: 3
For Avoid Detection, enter rating for Stor: 5
For Avoid Detection, enter rating for Turn: 4
For Avoid Detection, enter rating for No Change: 8
For Keep Contact, enter rating for Stop: 2
For Keep Contact, enter rating for Turn: 0.1
For Keep Contact, enter rating for No Change: 6
For Keep Station, enter rating for Stop: 6
For Keep Station, enter rating for Turn: 4
For Keep Station, enter rating for No Change: 9

RATING THE CRITERIA
To specify the degree of importance, enter a number between 1 and 9 where the
values are:

1 - Equal Importance
3 - Weak Importance of One Over the Other
5 - Strong Importance of One Over the Other
7 - Demonstrated Importance of One Over the Other
9 - Absolute Importance of One Over the Other
Use 2, 4, 6 & 8 when the degree of importance falls between the
values above.

1. Avoid Collision
2. Avoid Detection

Which of the criteria is more important? 1
By what degree? (Use scale above) 5

1. Avoid Collision
2. Keep Contact

Which of the criteria is more important? 1
By what degree? (Use scale above) 3

1. Avoid Collision
2. Keep Station

Which of the criteria is more important? 1
By what degree? (Use scale above) 1

1. Avoid Detection
2. Keep Contact

Which of the criteria is more important? 2
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By what degree? (Use scale above) 7

1. Avoid Detection
2. Keep Station

Which of the criteria is more important? 2
By what degree? (Use scale above) 7

1. Keep Contact
2. Keep Station

Which of the criteria is more important? 2
By what degree? (Use scale above) 3

* decision ratings range from 0 to 10 *
* 0 -- >verypoor *
* 10 -- > excellent *

RANKED DECISION LIST

quantitative subjective
alternative decision-value decision-value

1) Stop 3.0 fair
2) No Change 1.7 poor
3) Turn 0.3 very poor

Input E, I, M, or Q ---- > E

EXPLANATION
The No Change alternative is better than Stop in satisfying the Avoid Detection,
Keep Contact and Keep Station criteria. Stop is better than No Change in satisfying
the Avoid Collision criterion. With consideration to the overall importance of
Avoid Collision versus Avoid Detection, Keep Contact and Keep Station, the degree
of superiority of Stop over No Change in Avoid Collision is deemed t, be greater
than the degree of superiority of No Change over Stop in Avoid Detection, Keep
Contact and Keep Station. Hence, Stop is preferred over No Change.

Input E, I, M, or Q ---- > I
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Avoid Collision Avoid Detection Keep Contact Keep Station
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -. . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---

Stop 5.0 5.0 2.0 6.0
Turn 7.0 4.0 0.1 4.0
No Change 3.0 Q.n 6.0 9.0

RATINGS FOR CRITERIA:
1.5 0.2 0.8 1.6

---------------------------------------------------------------------------------------------

Input E, I, M, or Q ---- > M

Do you wish to use the Weighted-Sum Pair-Wise Method with the inp-L fIom the
Min-Max Pair-Wise Method ?
1. Yes
2. No
Please enter 1 or 2 ---> 1

-.-.------------------------------------------------------------------------------------------

Avoid Collision Avoid Detection Keep Contact Keep Station
..............................................................................................

Stop 5.0 5.0 2.0 6.0
Turn 7.0 4.0 0.1 4.0
No Change 3.0 8.0 6.0 9.0
.............................................................................................

RATINGS FOR CRITERIA:
1.5 0.2 0.8 1.6

.............................................................................................

EXPLANATION
Keep Station and Avoid Collision are 2 of the most important criteria, and since the
No Change alternative satisfies Keep Station AND Avoid Collision best, No Change
is the best choice.

Input E, I, M, or Q ---- > M

* FUZZY LOGIC DECISION-MAKING TOOL *
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1: Min-Max Rank Method
2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Description of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit

Which uo you prefer ?

Enter 1, 2, 3, 4, 5, 6, 7, 8, or 9 ---> 5

** DECISION MAKING TOOL USING THE MIN-MAX RANK METHOD **
A 4-. -1 : ,: -

Multi-objcc ,t,c decision making is a process of selecting a decision from a set of
decision alternatives, given a set of objectives with differing importance to the
decision maker. The Min-Max Rank Method is a 'conservative' decision algorithm
in which it is based on worst case analysis.

For each decision alternative, the Min-Max Rank Method finds the objective in
which the alternative has the minimum rating, and then assigns that rating to the
alternative as its 'overall' rating. Then, the Method selects the best decision
alternative with the maximum 'overall' rating.

The Min-Max Rank Method requires the user to specify:

1. The set of alternatives
2. The set of objectives
3. The degree (from a scale 0 to 6 ) to which each

alternative satisfies the objectives
4. The ranking (from a scale 0 to 6) of each objective

Please enter E or M ---> M

* FUZZY LOGIC DECISION-MAKING TOOL *

1: Min-Max Rank Method
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2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Description of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit

Which do you prefer ?

Enter 1, 2, 3, 4, 5, 6, 7, 8, or 9 ---> 6

** DECISION-AID TOOL USING PAIR-WISE MIN-MAX METHOD **

Multi-objective decision making is a process of selecting a decision from a set of
decision alternatives, given a set of objectives with differing importance to the
decision maker. The Pair-Wise Min-Max Method differs from the Min-Max Rank
Method in only one regard; it only requires pair-wise comparisions of objectives
rather than the complete ranking of all the objectives.

The Pair-Wise Min-Max Method requires the user to specify:

1. The set of alternatives
2. The set of objectives
3. The degree (from a scale 0 to 10 ) to which each alternative

satisfies the objectives
4. The pair-wise comparisons of importance of objectives

Please enter E or M ---> M

* FUZZY LOGIC DECISION-MAKING TOOL *

1: Min-Max Rank Method
2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Descrintion of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit
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Which do you prefer ?
Enter 1, 2, 3, 4, 5, 6, 7, 8, or 9 ---> 7

*DECISION MAKING TOOL USING THE WEIGHTED-SUM RANK METHOD

Multi-objective decision making is a process of selecting a decision from a set of
decision alternatives, given a set of objectives with differing importance to the
decision maker. The Weighted-Sum Rank Method is an 'optimistic' decision
algorithm based on average case analysis. The 'overall' rating of an alternative is
the average degree to which the alternative satisfies the objectives, where each
objective is weighted according to its importaizce. The Weighted-Sum Rank Method
will select the alternative with the highest 'overall' rating.

The Weighted-Sum Rank Method requires the user to specify:

1. The set of alternatives
2. The set of objectives
3. The degree (from a scale 0 to 6 ) to which each alternative

satisfies the objectives
4. The ranking (from a scale 0 to 6) of each objective

Please enter E or M ---> M

* FUZZY LOGIC DECISION-MAKING TOOL *

1: Min-Max Rank Method
2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Description of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit

Which do you prefer ?
Enter 1, 2, 3, 4, 5, 6, 7, 8, or 9 ---> 8

* DECISION MAKING TOOL USING THE WEIGHTED-SUM PAIR-WISE
METHOD *
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Multi-objective decision making is a process of selecting a decision from a set of
decision alternatives, given a set of objectives with differing importance to the
decision maker. The Weighted-Sum Pair-Wise Method is an 'optimistic' decision
algorithm based on average or typical case analysis. The 'overall' rating of an
alternative is the average degree to which the alternative satisfies the objectives,
where each objective is weighted according to its importance. The Weighted-Sum
Pair-Wise Method will select the alternative with the highest 'overall' rating.

The Weighted-Sum Pair-Wise Method requires the user to specify:

1. The set of alternatives
2. The set of objectives
3. The degree (from a scale 0 to 10 ) to which each alternative

satisfies the objectives
4. The pair-wise comparisions of the objectives.

Please enter E or M ---> M

* FUZZY LOGIC DECISION-MAKING TOOL *

1: Min-Max Rank Method
2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Description of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit

Which do you prefer ?
Enter 1, 2, 3. 4, 5, 6, 7, 8, or 9 ---> 9

script done on Wed Nov 30 13:34:18 1988

Script started on Thu Dec 1 12:03:01 1988

% lisp
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Franz Lisp, Opus 38.02
-> (load 'fuzzy.1))
[load fuzzy.1]

* FUZZY LOGIC DECISION-MAKING TOOL *

1: Min-Max Rank Method
2: Min-Max Pair-Wise Method
3: Weighted-Sum Rank Method
4: Weighted-Sum Pair-Wise Method
5: Brief Description of Min-Max Rank Method
6: Brief Description of Min-Max Pair-Wise Method
7: Brief Description of Weighted-Sum Rank Method
8: Brief Description of the Weighted-Sum Pair-Wise Method
9: Exit

Which do you prefer ?
Enter 1,2, 3, 4, 5. 6, 7, 8, or 9 ---> 2

* A FUZZY LOGIC DECISION-MAKING TOOL *

A program based on R.Yager's 1977 paper
"Multiple Object Decision-Making Using Fuzzy Sets"

ENTER NUMBER OF ALTERNATIVES: 3

ENTER LABEL FOR ALTERNATIVE 1: Stop
ENTER LABEL FOR ALTERNATIVE 2: Turn
ENTER LABEL FOR ALTERNATIVE 3: No Change

ENTER NUMBER OF CRITERIONS: 4

ENTER LABEL FOR CRITERION 1: Avoid Collision
ENTER LABEL FOR CRITERION 2: Avoid Detection
ENTER LABEL FOR CRITERION 3: Keep Contact
ENTER LABEL FOR CRITERION 4: Keep Station

RATING THE ALTERNATIVES:
Enter a value between 0 and 10; where a higher value indicates a better rating.
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For Avoid Collision, enter rating for Stop: 5
For Avoid Collision, enter rating for Turn: 7
For Avoid Collision, enter rating for No Change: 3
For Avoid Detection, enter rating for Stop: 5
For Avoid Detection, enter rating for Turn: 4
For Avoid Detection, enter rating for No Change: 8
For Keep Contact, enter rating for Stop: 2
For Keep Contact, enter rating for Turn: 0.1
For Keep Contact, enter rating for No Change: 6
For Keep Station, enter rating for Stop: 6
For Keep Station, enter rating for Turn: 4
For Keep Station, enter rating for No Change: 9

RATING THE CRITERIA
To specify the degree of importance, enter a number between 1 and 9 where the
values are:

1 - Equal Importance
3 - Weak Importance of One Over the Other
5 - Strong Importance of One Over the Other
7 - Demonstrated Importance of One Over the Other
9 - Absolute Importance of One Over the Other
Use 2, 4, 6 & 8 when the degree of importance falls between the values above.

1. Avoid Collision
2. Avoid Detection

Which of the criteria is more important? 2
By what degree? (Use scale above) 5

1. Avoid Collision
2. Keep Contact

Which of the criteria is more important? 1
By what degree? (Use scale above) 3

1. Avoid Collision
2. Keep Station

Which of the criteria is more important? 1
By what degree? (Use scale above) 1

1. Avoid Detection
2. Keep Contact

Which of the criteria is more important? 2
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By what degree? (Use scale above) 5

1. Avoid Detection
2. Keep Station

Which of the criteria is more important? 2
By what degree? (Use scale above) 3

1. Keep Contact
2. Keep Station

Which of the criteria is more important? 1
By what degree? (Use scale above) 1

PAIRED-COMPARISON OF CRITERIA

1 2 3 4

1 I 1 1/5 3 1 I
2 1 5 1 1/5 1/3 1
3 I 1/3 5 1 1 I
4 1 1 3 1 1 I

1 = Avoid Collision
2 = Avoid Detection
3 = Keep Contact
4 = Keep Station

THERE IS INCONSISTENCY IN THE MATRIX OF PAIRED-COMPARISONS

OF CRITERIA

THE FOLLOWING LIST OF INCONSISTENCIES IS NOT EXHAUSTIVE.

THE INCONSISTENCY IS AS FOLLOWS:
Keep Contact is more important than Avoid Detection by degree 5.0
Avoid Collision is more important than Keep Contact by degree 3.0
But Avoid Detection is more important than Avoid Collision by degree 5.0

THE INCONSISTENCY IS AS FOLLOWS:
Keep Station is more important than Avoid Detection by degree 3.0
Avoid Collision is more important than Keep Station by degree 1.0
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But Avoid Detection is more important than Avoid Collision by degree 5.0

To minimize the inconsistency listed above, it is recommended that the following
change be made:

Avoid Collision is more important than Avoid Detection with degree 7
(1, 2) --> 7
Would you like to make this change? [(y)es/(n)o] y

* ** ** * ******* :4**** *** *** **** *****

* decision ratings range from 0 to 10 *
* 0 -- >verypoor *
* 10 -- > excellent *

RANKED DECISION LIST

qiantitative -subject4v-
alternative decision-value decision-value

1) Stop 2.9 fair
2) No Change 1.8 poor
3) Turn 0.1 very poor

Input E, I, M, or Q --->q

script done on Thu Dec 1 12:08:03 1988
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A FUZZY LOGIC DECISION-MAKING TOOL
Functional Overview

Menu Handler

Fuzzy Logic
Fuzzy Logic Algorithm

Decision-Aids Descriptions

Fuzzy Logic Algorithms:

* Min-M! Method
* Eigenvector Method
* Weighted-Sum

Mlethod
* Wcighted-Sum-PW

Method
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A FUZZY LOGIC DECISION-MAKING TOOL

Function Descriptions

adjust-ratings ( )

Adjusts the ratings of the alternatives using Ci = bi v Ai (where Ci is the
now rating, bi is the adjusted criterion rating, and Ai is the actual alter-
native rating).

best-comp-value-1 ()

Finds the two criteria that cause the most inconsistencies and proceeds
to change the relative importance of the two criteria to reduce inconsis-
tencies.

between-0-10 ()

Will determine whether x is a number between 0 and 10.

clear-screen ( )

Clears the display screen.

compare-squrd-dists ()

Compares Max squaied distance against the others and finds the next
largest Dj) value.

compute-expected-best ()

Finds the most intuitively likely alternative and puts its index into
expected best; in case of ties, we will always choose the one that is near-
est to the top of the alternative list as expected-best.

compute-eigenvector-1 ()

Finds the largest eigenvalue and its eigenvectcr of matrix B. If there are
inconsistencies in B, the function will modify B to reduce inconsistencies.
If the outcome of the modified B and the original B is the same, compute-
eigenvector-1 will exit; otherwise, it will advise the user of the inconsis-
tencies. This function uses an approximation to calculate the eigenvalues:

1. Normalize each column of B to yield B'.

2. Take the average over the resulting rows, yielding the weight vector W.

3. Compute BW and divide each of the components of the resulting vector by
the corresponding component of W. This yields the Y vector.

4. Averaging the Y vector components gives the estimate of the maximum
eigenvalue. (lambda-max).
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compute-eigenvector-pw ()

Finds t'he largest eigenvalue and its eigenvector of matrix B If there are
inconsistencies in B, the function will modify B to reduce inconsistencies.
If the outcome of the modified B and the original B is the same, compute-
eigenvector-pw will exit; otherwise, it will advise the user of the inconsis-
tencies.

compute-expected-best ()

Finds the alternative that best satisfies the two most important criteria.
This is determined by computing the highest value for alt-ratings(cl,i)
* crit-ratings(cl) + alt-ratings(c2,i) * crit-ratings(c2), where cl = index

of most important criteria, c2 = index of second most important criteria,
i = alternative index.

compute-squrd-dist ( )

Computes the squared distance for each column Oth) of B'.

DO) = (B'(1, j) - w(1))**2 + (B'(2, j) - w(2))**2 +...

compute-Y-vector ()

Computes B*W and divides each of the components of the resulting vec-
tor by the corresponding component of W to yield the Y vector.

copy-alt-ratings-2 ( )

Makes a copy of the matrix alt-ratings into alt-ratings-2.

copy-alt-ratings-3 ( )

Makes a copy of the input matrix, scaled by the weights of the criteria.

create-min-max-header ()

Displays the program header.

create-eigen-header ( )

Displays the program title.

create-ws-header ()

Prints out the header for the Weighted-Sum Method.

create-wspw-header ()

Displays the header for the Weighted-Sum-Pair-Wise Method.

describe-eigenvector ( )

Gives a brief discussion of the Min-Max Pair-Wise Method.
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describe-min-max ()

Gives a brief description of the Min-Max Rank Model.

describe-weighted-sum ()

Gives a brief discussion of the Weighted-Sum Model.

describe-weighted-sum-pw ()

Output a brief description of the Weighted-Sum Pair-Wise Method.

discern ()

Will prompt the user until he/she enters a positive integer.

eigen-alt-ratings-header ()

Displays a header for degrees of preference.

eigen-copy-alt-ratings ()

Makes a copy of the matrix alt-ratings into alt-ratings-2.

eigen-crit-ratings-header ()

Displays the header for the RATING THE CRITERIA screen.

eigen-explain ()

Determines whether expected-best = actual-best and outputs the
explanation accordingly.

eigen-flmd-actual-best ()

Puts the index of the best alternative into actual-best.

eigen-f'md-row-difference ()

Computes the difference between the expected-best ad actual-best
alternatives.

eigen-get-alt-ratings ()

Queries user to rate each alternative based on each criterion.

eigen-get-crit-ratings ( )

Prompts the user to do pair-wise comparisons between all criteria in or-
der to determine their relative importance.

eigen-handle ( )

Performs the appropriate tasks depending on the input x; if x = q, then
program exits; x = e, prints explanation; x = i, prints input;
x = m, menu.
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eigen-print-alt-rows ()

Prints the list of alternatives and the degrees to which they satisfy vari-
ous criteria.

eigen-print-crit-ratings ()

Prints the weights of the criteria.

eigen-print-matrix ()

Prints the inputting matrix.

eigen-scan-row+ ( )

Puts the indices corresponding to those criteria to which the actual-best
alternative is better than the expected-best alternative.

eigen-scan-row- ()

Puts the indices corresponding to those criteria to which the actual-best
alternative is better than the expected-best alternative.

eigen-set-expected-best ( )

Set to the second-best alternatives on the decision-list.

eigen-set-menu ()

Prompts the user for the next input. If the next input is 'E', the program
will display explanation; 'I', input; 'Q', quit; 'M', menu.

eigen-to-weighted-sum ()

Runs the Weighted-Sum Pair-Wise Method using the input from the pre-
vious run of the Min-Max Pair-Wise Method.

eigen-to-weighted-sum-menu ()

Is activated when the Min-Max Pair-Wise Method has finished its run.
The menu asks the user whether he/she wants to use the Weighted-Sum
Pair-Wise Method using the input from the previous running of the Min-
Max Pair-Wise Method.

eigenvector ( )

Drives the Min-Max Pair-Wise Algorithm.

est-lambda-max ( )

Approximates the maximum eigenvalue by averaging the components of
the Y vector.

expected-output ( )

Prints the explanation when the expected-best alternative is also the
actual-best alternative.
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explain ()

Determines whether expected-best = actual-best and outputs the
explanation accordingly.

explain-eigen-decision ( )

Collects pertinent data for creating an explanation for the decision value.

explain-min-max-decision ()

Creates an explanation for the decision by comparing the min-max
decision versus the decision that the user may have expected.

explain-ws-decision ( )

Creates an explanation for the program's decision. This is done by
determining what the "expected" choice would be, then comparing that
choice with the program's choice.

enpla-wspw-dee~si .- 9

Creates the explanation.

explanation-header ()

Simply prints the header.

find-actual-best ()

Puts the index of the best alternative into actual-best.

find-alternative-length ( )

Finds the maximum number of characters that is in any of the alterna-
tive labels and places it in the variable "max-length".

fimd-bet-choice ()

Displays to the user the ranked list of alternatives.

find-decision-value ( )

Computes a decision-value for each i,

min(alt-rating(i, j)**[W(j)*mI) for all j.
This value gets put in the decision-list and is used in determining the
best choice. The best choice will be the alternative corresponding to the
maximum decision-value.

find-min-list ( )

Keeps track of the criterion in which an alternative has the lowest rat-
ing.
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find-min-max-decision ()

Executes the steps for determining the best alternative.

fimd-min-triple ( )

Finds the value that minimizes the triples that have the two worst
inconsistency values in common. For example, if it has been determined
that B(1,2) is the most inconsistent component of the B matrix, then we
are interested in minimizing the sum of

B(1,2)*B(2,3) / B(1,3) + B(1,2)*B(2,4) / B(1,4).

rind-row-difference ()

Takes the difference between the ratings of the "actual" best choice and
the ratings of the "expected" best choice. Scan-row ,- determines the cri-
teria in which the "actual" rates better than the "expected." Scan-row-
does a similar action except reversing the action. Finally, explain deter-
mines whether the "expected" = the "actual" and outputs an appropriate
explanation. Find-actual-best, find-row-difference, scan-row + & scan-
row- are functions from the Min-Max Program.

get-2-max-crit ()

Finds the two most important criteria.

get-labels ( )

Gets labels for criteria and alternatives.

get-line ( )

Reads the current line into buffer "line."

get-weight-vector ()

Takes the average over the B' rows.

handle ( )

Performs the appropriate tasks depending on wL. nput x; if x q,
then program quits; x = e, prints explanation; x = i, prints input;
x = m, displays menu.

init-eigen ( )

Prompts the user for the alternatives, criteria, and their ratings.

init-min-max ( )

Initializes the program by creating the global variables a..! gL.tI.ing the
decision parameters (alternatives & criteria) from the user.
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init-ws ()

Initializes the program by prompting the user for the ratings and labels
for the alternatives and criteria. Then using th;s input, init-ws( ) defines
the global data structures.

init-wspw ( )

Prompts the user for the input parameters (labels, quantity, and ratings
fv: thc alternatives and criteria) then initializes the global data struc-
tures.

less-than ( )

Will determine whether x is an integer less than or equal to y and greater
than z; zy are expected to be integers.

less-than-7 ( )

Checks for ratings less than 7.

make-decision ()

Finds the optimal solution x* that satisfies D(x*) = Max D(x) for all x
where x is an element of the set of alternatives.

make-decision-list ()

Creates a decision-list of the form ((alt-decision-value.alt-number)...). The
decision value is computed by taking the sum of alt-ratings(i, j)*crit-
ratings(i) for each j (alternative) over all i (criteria).

max-squrd-dist ( )

Finds maximum D(j) value.

menu ( )

Activates the top-level menu for the decision aid tool. The decision-
making tool has four different implementations, and the user can choose
among the four.

an-max ( )

Drives the Mir,-Max Rank Algorithm.

min-max-explain ()

Determines whether expected-best = actual-best and outputs the
explanation accordingly.

min-max-get-alt-ratings ()

&Jencis user Lo rate eacn alternative based on each criterion.
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min-max-get-crit-ratings ()

Queries user to rate each criterion.

min-max-make-decision ()

Finds the optimal solution x* tl 't satisfies D(x*) = Max D(x) for all x
where x is an element of the set of alternatives.

min-max-make-decision-list (alt-list)

Creates the set D = C1 A C2 A ... A Cp where D(x) = Min[Ci(x] and
Ci(x) = Bi v Ai(x).

min-max-positive-output ()
Prints the explanaLion when the expected-best alternative is also the

actual-best alternative.

min-max-negative-output ()

Prints the explanation when the expected-best alternative is different
from the actual-best alternative.

min-max-print-crit-ratings ()

Prints the weights of the criteria.

min-max-print-matrix ()

Prints the inputting matrix and the weights of the criteria.

min-max-set-menu ( )

Prompts the user for the next input. If the next input is 'E', the program
will display explanation; 'I', input; 'Q', quit; 'M', menu.

min-max-handle ()

Performs the appropriate tasks depending on the input x; if x = q, then
piogram resets; x = e, prints explanation; x = i, prints input; x = m,
menu.

min-to-sum ()

Uses the same input from the Min-Max Rank Method as new input to the
Weighted-Sum Rank Method.

min-to-sum-menu ()

This menu is activated after the user finishes using the Min-Max Rank
Method. Since the inputting formats of the Min-Max Rank Method and
the Weighted-Sum Rank Method are the same, the input of the Mm-Max
Rank Method can be used as the input of the Weighted-Sum Rank
Method. The menu will ask the user whether he/she wants to try the
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Weighted-Sum Rank Method using the input from the Min-Max Rank

Method.

more-than-one-best-choice ()

Determines whether the program has produced more than one alterna-
tive with the highest rating if yes, puts all best alternatives in best-
choice list.

more-than-one-best-choice-output ()

Prints the explanation when there is more than one choice with the top
rating.

neutral-output ()

Prints explanation when actual-best is not better than the expected-best
in any of the criteria.

no-change-in-decision ()

Determines whether there is a change in the outcome if the input were
modified; if yes, returns 't; otherwise, returns 'nil.

normalize-B ()

Normalizes each column of matrix B (matrix of criteria ratings) to yield
B'.

output-1 ()

Outputs explanation for a decision where the top two alternatives have
identical ratings.

output-2 ()

Outputs part of the explanation for the final decision when the top
choice has a higher rating than the second-best choice.

output-inconsistency ()

Advises the user of the inconsistencies of input.

positive-integer ()

Will determine whether an input x is a positive integer; if yes, returns
'x; otherwise returns 'nil.

print-alt-rows ()

Prints the ratings of an alternative with respect to criteria.

print-criteria ( )

Prints the list of criteria.
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print-crit-ratings ()

Prints the weights of the criteria.

print-culprit ()

Prints the criterion that is partially responsible for an alternative being
rejected as the best choice.

print-dashes ()

Prints a line of dashes; the length of the line depends on the size of input.

print-list ()

Prints a sublist of the list "criteria."

print-matrix ()

Prints the inputting matrix and the weights of the criteria.

print-measures ()

Displays preference measures menu.

pw-make-decision ()

Is used for the Weighted-Sum Pair-Wise Method.

pw-make-decision-list ()

Given alt-list, which is a list of alternatives' indices, pw-make-decision-
list creates a "decision list" containing the decision value of
alt-rating(i, j) * crit-rating (j) for each alternative.
The decisio, has the format:

((<decision value>. < alternative index> )...).

r-1-r-2 ( )

Copies the two highest ratings on the decision-list into rating-1 and rat-
ing-2, accordingly.

read-O-10 ()

Will prompt the user to input a number between 0 and 10; if the user in-
puts something other than such number, the function will prompt the
user again to input a "valid" number. The function returns the value of
valid input.

read-input ( )

Reads input. If input is 1, 2, 3, or 4, it returns input as the value of read-
input; otherwise, it prompts the user for a valid input of 1, 2, 3,
or 4.
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read-in-x ()

Will return the value of x when x is an integer between the integers y
and z; otherwise, the function will prompt the user for a "valid" input x.

read-x-in-list ( )

Will read an input x; it will check whether x is an element of 1; if yes,
take appropriate actions; otherwise, do nothing.

recommend-new-value ()

Warns the user about the inconsistencies in the pair-wise comparisons of
the criteria and recommends that the relation between two of the criteria
be changed to minimize the inconsistencies.

request-for-menu ( )

Prompts the user to select either the Menu or Exit.

restore ( )

Restores B to the original B.

restore-ratings ( )

Restores the matrix alt-ratings.

scan-row+ ()

Puts the indices corresponding to those criteria to which the actual-best
alternative is better than the expected-best alternative.

set-menu ()

Prompts the user for the next input. If the next input is 'E', the program
will display explanation; '1', input; 'Q', quit; 'M', menu.

show-greatest-inconsistency ()

Gives a partial list of the inconsistent ratings among criteria. The list is
not meant to be exhaustive. It just lists the most inconsistent criteria;
other minor inconsistencies are ignored.

sort-crit-list ( )

Puts criteria into sorted-crit-list in order of their importance. The most
important one is at the top of the list.

stop-scroll ()

Stops scrolling. Scrolling continues when the user presses any key.

sum-of-row ( )

Returns the sum of all elements of the j-th row of the array
alt-ratings-3.
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sum-to-min ()

Uses the input from the Weighted-Sum Rank Method as input to the
Min-Max Rank Method.

sum-to-min-menu ()

This menu is activated when the Weighted-Sum Rank Method finishes its
execution. The menu asks the user whether he/she wants to use the input
from the Weighted-Sum Rank Method as input to the Min-Max Rank
Method.

temp-values ()

Computes the two values that optimize the consistency matrix.

unexpected-output ( )

Prints the explanation when the expected-best alternative is different
from the actual-best alternative.

weighted-sum ()

Drives the weighted-sum rank algorithm.

weighted-sum-pw ()

Implements the Weighted-Sum Pair-Wise Method. It takes the same
input format as the Min-Max Pair-Wise Method.

weighted-sum-to-eigen ()

Runs the Min-Max Pair-Wise Method using input from the previous run-
ning of the Weighted-Sum Pair-Wise Method.

weighted-sum-to-eigea-menu ()

Is activated when the Weighted-Sum Pair-Wise Method finished its exe-
cution. It will ask the user whether he/she wants to use the input from
the previous running of the Weighted-Sum Pair-Wise Method to run the
Min-Max Pair-Wise Method.

wspw-compute-expected-best ()

Finds the alternative that best satisfies the two most important criteria.

wspw-explain ( )

Determines whether expected-best = actual-best and outputs the
explanation accordingly.
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w-pw-handle ()

Performs the appropriate tasks depending on the input x; if x = q, then
program quits; x = e, prints explanation; x = i, prints input; x = m, dis-
plays menu.

wspw-set-menu ()

Prompts the user for the next input. If the next input is 'E', the program
w1ll display explanation; T, input; 'Q', quit; 'M', menu.
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;Darlene Teotico

;Naval Ocean Systems Center - Code 444

(defun fuzzy ()

Create header.
(princ " * A FUZZY LOGIC DECISION-MAKING TOOL

*" )(terpri)(terpri)
(princ " a program based on R.Yager's 1977 paper")
(terpri)
(princ" Multiple Object Decision-Making Using Fuzzy Sets")
(terpri)

; Get labels and ratings for alternatives and criteria.

(setq alternatives (funcall 'get-labels 'ALTERNATIVE))
(setq criteria (funcall 'get-labels 'CRITERION ))
(setq n (length alternatives))
(setq m (length criteria))
(array alt-ratings flonum n m)
(array B flonum m m)
(array decision-list fixnum n)
(get-alt-ratings)
(oet-crit-ratings)

(compute-eigenvector)
(find-decision-values)
(find-best-choice)

............................................................................................

Get labels for criteria and alternatives.

(defun get-labels (type)
(setq 1 nil)
(terpri)
(terpri)
(princ "ENTER NUMBER OF ") (princ type) (princ "S: ")
(setq count (read))
(terpri)
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(do ((x I (add I x)))
((greaterp x count) 1)

(princ " ENTER LABEL FOR ") (princ type) (princ .. )

(princ x)
(princ ": ")
(setq I (append l 1 (read)))

Menu for degrees of preference.

(defun alt-ratings-header ()
(terpri)
(princ " RATING THE ALTERNATIVES")
(terpri)(terpri)

(princ ..-..--------------- ) (terri)
(princ" I Enter a value between 0 and 1; 1") (terpri)
(princ" I where a higher value indicates I") (terpri)
(princ " I a better rating. I") (terpri)
(princ ".-- --------------- -) (terpri)
(terpri) I

Query user to rate each alternative based on each criterion.

(defun get-alt-ratings 0
(do ((x 0 (addl x)) (xx criteria (cdr xx)))

((equal x m) nil)
(alt-ratings-header)
(do ((y 0 (add 1 y)) (yy alternatives (cdr yy)))

((equal y n) nil)
(princ "For ") (princ (car xx)) (princ ", enter rating for ")
(princ (car yy)) (princ ":
(store (alt-ratings y x) (read)))

(terpri) 1

Header for the RATING THE CRITERIA screen.

(defun crit-ratings- header ()

(terpri)
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(princ" RATING THE CRITERIA") (terpri)(terpri)
(p rin c - ----------------------------------------------------
(terpri)
(princ" I To specify the degree of importance, enter a number I")
(terpri)
(princ " I between 1 and 9 where the values are: I")
(terpri)
(princ " I !I")
(terpri)
(princ " I 1 - Equal Importance I")
(terpri)
(princ " I 3 - Weak Importance of One Over the Other I")
(terpri)
(princ" I 5 - Strong Importance of One Over the Other i)
(terpri)
(princ " I 7 - Demorstrated Importance of One Over the Other I")
(terpri)
(princ " I 9 - Absolute Importance of One Over the Other I")
(terpri)
(princ " I I")
(terpri)
(princ " I Use 2, 4, 6 & 8 when the degree of importance falls I")
(terpri)
(princ " I between the values above. I")
(terpri)
(princ " ------------------------------------------------ )

(terpri)(terpri)

(defun get-crit-ratings ()
; Set aii = 1
(do i 0 (addI i) (eq i m)

(store (B i i) 1.0))
(do i 0 (addl i) (eq i (subI m))
(do j (addi i) (addI j) (eq j m)
(crit-ratings-header)
(terpri)
(princ "1. ") (princ (nth i criteria)) (terpri)
(princ "2. ") (princ (nth j criteria)) (terpri) (terpri)
(princ "Which of the criteria is more important? ")
(setq choice (read))
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(prine "By what degree? (Use scale above) "

(setq degree (read))
(cond ((eq choice 1)

(store (B i j) (float degree)
(store (B j 1) (quotient 1 .0 degree)))

(t (store (B j i) (float degree))
(store (B i j) (quotient 1 .0 degree))))

(defun compute -e igenvector0
(normalize-B)
(get-wei ght-.vector)
(Compute-Y-vector)
(est-lambda-max)

(setq inconsist
(sqrt (quotient (diff lambda-max m)(diff (times 2.0 m) 2.0))))

(cond ((greaterp inconsist .2)
(terpri)
(princ "PAIRED-COMPARISON OF

CRITERIA ")(terpri)(terpri)
(princ" "
(do x 2 (add 1 x) (greaterp x m)

(princ " ") (princ x))
(terpri) (princ "

(do x 1 (add 1 x) (greaterp x m)
(prine "

(prine " ") (terpri)
(do x 0 (add I x) (eq x m)

(princ (addi x)) (princ " I")
(do y 0 (addi y) (eq y m)

(cond (lessp (B x y) 1.0)
(princ " 1/")
(princ (fix (quotient 1 (B xy))
(princ"

(t(princ"
(princ (fix(B x y)))
(princ ""))

(princ "I") (terpri))
(princ " "
(do x I (addl x) (greaterp x m)
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(princ "-

(piinc .... ) (terpri) (terpri)
(do ((x 1 (add I x))

(c criteria (cdr c)))
((null c))

(princ " ")(princ x)(princ " = ")(princ (car c))(terpri))
(terpri)
(princ" THERE IS INCONSISTENCY IN THE MATRIX OF")
(princ "PAIRED-CO: 4PARISONS OF CRITERIA") (terpri)(terpri)

(princ " Lambda max = ") (princ lambda-max) (terpri)
(princ " Inconsistency = ") (princ inconsist) (terpri)(terpri)
(princ " Would you like to re-enter the paired-comparison values")
(terpri)
(princ " for the criteria? [yes or (no)] ")
(cond ((eq (read) 'yes)

(get-crit-ratings)
(compute-eigenvecto)))

(defun normalize-B )
(array B-prime flonum m m)
(doj 0 (addl j) (eqj m)

(setq sum 0)
(do i 0 (add1 i) (eq i m)

(setq sum (add sum (B ii))))
(do i0 (addl i) (eq i m)

(store (B-prime i j) (quotient (B i j) sum)))

(defun get-weight-vector 0
(setq W nil)
(do i 0 (addI i) (eq i m)
(setq sum 0.0)
(doj 0 (addl j) (eqj m)

(setq sum (add sum (B-prime i j))))
(setq W (appendl W (quotient sum (float m)))) ]

(defun compute-Y-vector 0
(setq Y nil)
(do i 0 (addl i) (eq i m)
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(setq sum 0.0)
(doj 0 (addl j) (eqj m)

(setq sum (add sum (times (B i j) (nth j W)))))
(setq sum (quotient sum (nth i W)))
(setq Y (append 1 Y sum))]

(defun est-lambda-max 0
(setq sum 0.0)
(do i 0 (addl i) (eq i m)
(setq sum (add sum (nth i Y))))

(setq lambda-max (quotient sum (float m))) I

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . --. . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(defun find-decision-values 0
(setq decision-list nil)
(do A 0 (addl A) (eq A n)

(setq min 99999.0)
(do C 0 (add1 C) (eq C m)

(setq new (expt (alt-ratings A C)
(times (nth C W)(float m))))

(cond ((lessp new min)
(setq min new))))

(setq decision-list (appendl decision-list min)))]

............................................................................................

(defun find-best-choice 0
(setq value -1.0)
(do A 0 (add] A) (eq A n)

(cond ((greaterp (nth A decision-list) value)
(setq choice A)
(setq value (nth A decision-list)))))

(terpri)
(princ "Based on the model, the best choice is ")
(princ (nth choice alternatives)) (terpri) ]
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;This fuzzy logic decision tool is based on Ronald R. Yager's
;"A New Methodology For Ordinal Multiobjective Decisions Based On
;Fuzzy Sets"

;Darlene Teotico

;Naval Ocean Systems Center - Code 444
............................................................................................

(defun fuzzy 0

; Create header.
(terpri)
(princ" * A FUZZY LOGIC DECISION-MAKING TOOL

*")(terpri)(terpri)
(princ" a program based on R.Yager's 1981 paper")
(terpri)
(princ" A New Methodology for Ordinal Multiobjective")
(terpri)
(princ " Decisions Based on Fuzzy Sets")
(terpri)
; Get labels and ratings for alternatives and criteria.

(setq alternatives (funcall 'get-labels 'ALTERNATIVE))
(setq criteria (funcall 'get-labels 'CRITERION))
(setq no-alts (length alternatives))
(setq no-crits (length criteria))
(array alt-ratings fixnum no-crits no-alts)
(array crit-ratings fixnum no-crits)
(array decision-list fixnum no-alts)
(array c-min fixnum no-alts)
(get-alt-ratings)
(get-crit- ratings)

(adjust-ratings)
(setq decision (make-decision))
(terpri) (terpri) (princ "Our decision based on this model is ")
(princ (nth (cdr decision) alternatives)) (terpri)
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Get labels for criteria and alternatives.

(defun get-labels (type)
(setq I nil)
(terpri)
(terpri)
(princ "ENTER NUMBER OF ") (princ type) (princ "S: ")
(setq count (read))
(terpri)
(do ((x I (add I x)))

((greaterp x count) 1)
(princ " ENTER LABEL FOR ") (princ type) (princ.
(princ x)
(princ ": ")
(setq 1 (append l 1 (read)))

Preference measures menu.

(defun print-measures 0
(terpri)
(princ .----------------------------- ) (terpri)
(princ" I PREFERENCE MEASURES: I") (terpri)
(princ" 0. lowest or none I") (terpri)
(pIn " I 1. very low I") (terpri)
(princ" 1 2. low I") (terpri)
(princ" 3. medium I") (terpri)
(prin" 1 4. high I") (terpri)
(princ" 5. very high I") (terpri)
(princ" 6. perfect or absolute I") (terpri)
(princ -- -- -- -- -- -- --- - 1) (terpri)

(princ " ---------------------------------------------------------------------------")(epi

)

Query user to rate each alternative based on each criterion.

(defun get-alt-ratings 0
(print-measures)
(do ((x 0 (add 1 x)) (xx criteria (cdr xx)))
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((equal x no-crits) nil)
(do ((y 0 (add1 y)) (yy alternatives (cdr yy)))

((equal y no-alts) nil)
(princ "For ") (princ (car xx)) (princ ", enter rating for ")
(princ (car yy)) (princ " (0 - 6): ")
(store (alt-ratings x y) (read)) I

Query user to rate each criterion. Then adjust the rating that is the
negation of the value.

(defun get-crit-ratings 0
(print-measures)
(do ((x 0 (addl x)) (xx criteria (cdr xx)))

((equal x no-crits) nil)
(princ "Enter rating for ") (princ (car xx))
(princ " (0 - 6): ")

(store (crit-ratings x) (difference 6 (read))) I

Adji"st the ratings of the alternatives using Ci = bi V Ai.
where Ci is the new rating, bi is the adjusted criterion rating and
Ai is the actual alternative rating.

(defun adjust-ratings 0
(cond ((null (car criteria)) criteria)

(t (do x 0 (add 1 x) (equal x no-crits)
(do y 0 (addl y) (equal y no-alts)

(cond ((greaterp (crit-ratings x)
(alt-ratings x y))

(store (alt-ratings x y) (crit-ratings x)))) I

Create the set D = CI AC2 A ... ACp , where D(x) = Min[Ci(x)]
and Ci(x) = Bi V Ai(x).

(defun make-decision-list (alt-list decision-list)
(do a alt-list (cdr a) (null a)

(setq max-alt (cons (alt-ratings 0 (car a)) (car a)))
(store (c-rin (car a)) 0)
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(do c 1 (addl c) (equal c no-crits)
(cond ((lessp (alt-ratings c (car a))

(car max-alt))
(setq max-alt (cons (alt-ratings c (car a)) (car a)))
(store (c-min (car a)) c))) )

(setq decision-list (appendl decision-list max-alt)))

Sort the decision list
(setq decision-list (sortcar decision-list 'greaterp)) )

Find the optimal solution x* that satisfies D(x*) = Max D(x) for
all x where x is an element of the set of alternatives.

(defun make-decision ()
(prog ()

create the list of alternatives...
(setq alt-list nil)
(do a 0 (addl a) (eq a no-alts)

(setq alt-list (appendl alt-list a)))
(setq decision-list nil)
(setq decision-list (make-decision-list alt-list decision-list))
(setq decision (car decision-list)) ; Make max be the first in list.
(setq decision-list2 decision-list) ; make a working copy of d-list.

FIND-TIES
(setq alt-list (cons (cdr decision) nil))
(do d (cdr decision-list2) (cdr d) (null d)

(cond ((eq (caar d) (car decision))
(setq alt-list (appendl alt-list (cdar d)))
(do c 0 (add 1 c) (eq c no-crits)
(cond ((eq (car decision)

(alt-ratings c (cdar d)))
(store (alt-ratings c (cdar d)) 7)))))))

(cond ((greaterp (length alt-list) 1)
(do c 0 (addl c) (eq c no-crits)

(cond ((eq (car decision)
(alt-ratings c (cdr decision)))

(store (alt-ratings c (cdr decision)) 7))))
(setq decision-list2 (make-decision-list alt-list decision-list2))
(setq decision (car decision-list2))
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(cond ((less-than-7 alt-list) (go FIND-TIES)))))

(return decision)

Checks for ratings less than /. If there are none, then there will be
a tie...

(defun less-than-7 (alt-list)
(setq below-7 nil)
(do ((a alt-list (cdr a))

(below-7 nil))
((or (null a) below-7) below-7)
(do c 0 (addl c) (eq c no-crits)

(cond ((lessp (alt-ratings c (car a)) 7)
(setq below-7 t))]
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